Global Positioning System Reference
In-Depth Information
The elevation angle dependency for such an approximation of Eq. (43) is also plotted in
Fig. 11.
As already mentioned, after removal of the Selective Availability, the ionosphere becomes
the single largest error source for GNSS error budgets. Fortunately, a dual-frequency
ionosphere-free combination can remove about 99% of the ionospheric effects; thanks to the
dispersive nature of the ionosphere. Although higher order residual terms are less than 1%
of the first order term, they can be many centimeters during times of high TEC and
represent large errors in geodetic measurements especially in precise point positioning. This
chapter gives estimation of higher order ionospheric terms at different level of ionospheric
ionization and discusses different correction approaches for them.
5. References
Appleton, E. V. (1932). Wireless studies of the ionosphere, Proceeding of Instn. Elect. Engrs .,
Vol. 7, No. 21, pp. (257-265), 10.1049/pws.1932.0027
Bassiri, S. & Hajj, G. A. (1993). Higher-order ionospheric effects on the global positioning
system observables and means of modeling them. manuscripta geodaetica, Vol. 18,
No. 6, pp. (280-289)
Blewitt, G. (1987). New approaches to GPS carrier-phase ambiguity resolution. Proceeding
of XIX General Assembly of the IUGG, Vancouver, Canada, August 10-22
Brunner, F. K. & Gu, M. (1991). An improved model for the dual frequency ionospheric
correction of GPS observations. manuscripta geodaetica, Vol. 16, No. 3, pp. (205-
214)
Budden, K. G. (Ed.). (1985). The Propagation of Radio Waves: the theory of radio waves of low
power in the ionosphere and magnetosphere , Cambridge University Press, Cambridge.
Datta-Barua, S., Walter, T., Blanch, J. & Enge, P. (2008). Bounding higher-order ionosphere
errors for the dual-frequency GPS user. Radio Sci., Vol. 43, No. RS5010, pp. (15),
doi:10.1029/2007RS003772
Davies, K. (Ed.). (1990). Ionospheric Radio , Peter Peregrinus Ltd, London.
Elizabeth, J. P., Matt, A. K., Philip, M. & David, A. L. (2010). A first look at the effects of
ionospheric signal bending on a globally processed GPS network. J Geod, Vol. 84,
pp. (491-499), DOI 10.1007/s00190-010-0386-2
Fritsche, M., Dietrich, R., Knöfel, C., Rülke, A., Vey, S., Rothacher, M. & Steigenberger, P.
(2005). Impact of higher-order ionospheric terms on GPS estimates. Geophys Res
Lett, Vol. 32, No. 23, L23311, DOI 10.1029/2005GL024342
Hartmann, G. K. & Leitinger, R. (1984). Range errors due to ionospheric and tropospheric
effects for signal frequencies above 100 MHz. Bull. Geod, Vol 58, No. 2, pp. (109-
136)
Hawarey, M., Hobiger, T. & Schuh, H. (2005). Effects of the 2nd order ionospheric terms on
VLBI measurements. Geophys Res Lett, Vol. 32, No. 11, L11304, DOI
10.1029/2005GL022729
Hernandez-Pajares, M., Jaun, J. M., Sanz, J. & Orus, R. (2007). Second order ionospheric term
in GPS: implementation and impact on geodetic estimates. Journal of Geophysical
Research, Vol. 112, No. B08417, doi:10.1029/2006JB004707
Search WWH ::




Custom Search