Global Positioning System Reference
In-Depth Information
precision is needed full fledged least squares solution and further filtering techniques could
be applied.
5. Acknowledgment
Part of this research is supported by University of Malaya high-impact research grant number
UM.C
/
HIR
/
MOHE
/
FCSIT
/
04.
6. References
Bajaj, R., Ranaweera, S. & Agrawal, D. (2002). GPS: Location-tracking technology, Computer
35(4): 92-94.
Bancroft, S. (1985). An algebraic solution of the GPS equations, IEEE Transactions on Aerospace
and Electronic Systems 21(6): 56-59.
Ca
ff
ery, J. J. (2000). A new approach to the geometry of TOA location, 52nd Vehicular Technology
Conference .
Cha
ee, J. & Abel, J. (1994). On the exact solutions of pseudorange equations, IEEE Transactions
on Aerospace and Electronic Systems 30: 1021-1030.
Chan, Y. & Ho, K. (1994).
ff
ficient estimator for hyperbolic location, IEEE
Transactions on Signal Processing 42: 1905-1915.
Chintalapudi, K. K., Dhariwal, A., Govindan, R. & Sukhatme, G. (2004). Ad-hoc localization
using ranging and sectoring, INFOCOM .
Foy, W. H. (1976). Position-location solutions by Taylor-series estimation, IEEE Trans. Aerosp.
Electron. Syst. 12: 187-194.
Friedlander, B. (1987). A passive localization algorithm and its accuracy analysis, IEEE J. Ocean.
Eng. 12: 234-245.
Kleusberg, A. (1994). Analytical GPS navigation solution, pp. 1905-1915.
Rahman, M. Z. & Kleeman, L. (2009). Paired measurement localization: A robust approach for
wireless localization, IEEE Transactions on Mobile Computing 8(8).
Smith, J. O. & Abel, J. S. (1987).
A simple and e
Closed-form least-squares source location estimation
from range-di
ff
erence measurements, IEEE Trans. Acoust., Speech, Signal Process.
35: 1661-1669.
Strang, G. & Borre, K. (1997). Linear Algebra, Geodesy, and GPS , Wellesley-Cambridge.
Torrieri, D. J. (1984). Statistical theory of passive location systems, IEEE Trans. Aerosp. Electron.
Syst. 20: 183-197.
Search WWH ::




Custom Search