Information Technology Reference
In-Depth Information
31. Do, C.B., Gross, S.S., Batzoglou, S.: CONTRAlign: discriminative training for protein
sequence alignment. In: Research in Computational Molecular Biology. Springer, Berlin
(2006)
32. Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines
and neural networks. Bioinformatics 17 (4), 349 - 358 (2001)
33. Dong, Q., Zhou, S., Guan, J.: A new taxonomy-based protein fold recognition approach based
on autocross-covariance transformation. Bioinformatics 25 (20), 2655
2662 (2009)
34. Sharma, A., et al.: A feature extraction technique using bi-gram probabilities of position
specific scoring matrix for protein fold recognition. J. Theor. Biol. 320 ,41
-
46 (2013)
35. Smith, T.F., Waterman, M.S.: Comparison of biosequences. Adv. Appl. Math. 2 (4), 482
-
489
-
(1981)
36. Pearson, W.R.: Searching protein sequence libraries: comparison of the sensitivity and
selectivity of the Smith-Waterman and FASTA algorithms. Genomics 11 (3), 635
650 (1991)
37. Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25 (17), 3389
-
3402 (1997)
38. Pearson, W.R.: [5] Rapid and sensitive sequence comparison with FASTP and FASTA.
Methods Enzymol. 183 ,63 - 98 (1990)
39. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl.
Acad. Sci. 89 (22), 10915 - 10919 (1992)
40. Eddy, S.R.: HMMER: pro le hidden Markov models for biological sequence analysis (2001)
41. Hughey, R., Krogh, A.: Hidden Markov models for sequence analysis: extension and analysis
of the basic method. Comput. Appl. Biosci. CABIOS 12 (2), 95 - 107 (1996)
42. Morgenstern, B., et al.: DIALIGN: finding local similarities by multiple sequence alignment.
Bioinformatics 14 (3), 290
-
294 (1998)
43. Probst, W.C., et al.: Sequence alignment of the G-protein coupled receptor superfamily. DNA
Cell Biol. 11 (1), 1
-
20 (1992)
-
44. S
รถ
ding, J.: Protein homology detection by HMM
HMM comparison. Bioinformatics 21 (7),
-
960 (2005)
45. Tomii, K., Akiyama, Y.: FORTE: a pro le
951
-
pro le comparison tool
for protein fold
-
595 (2004)
46. Heger, A., Holm, L.: Picasso: generating a covering set of protein family pro les.
Bioinformatics 17 (3), 272
recognition. Bioinformatics 20 (4), 594
-
279 (2001)
47. Moult, J.: A decade of CASP: progress, bottlenecks and prognosis in protein structure
prediction. Curr. Opin. Struct. Biol. 15 (3), 285 - 289 (2005)
48. Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequence (RefSeq): a curated non-
redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33
(suppl 1), D501 - D504 (2005)
49. Bates, P.A., et al.: Enhancement of protein modeling by human intervention in applying the
automatic programs 3D-JIGSAW and 3D-PSSM. Proteins Struct. Funct. Bioinf. 45 (S5), 39 - 46
(2001)
50. Koonin, E.V., Wolf, Y.I., Aravind, L.: Protein fold recognition using sequence profiles and its
application in structural genomics. Adv. Protein Chem. 54 , 245
-
275 (2000)
51. Eddy, S.R.: Hidden markov models. Curr. Opin. Struct. Biol. 6 (3), 361
-
365 (1996)
52. Bateman, A., et al.: The Pfam protein families database. Nucleic Acids Res. 32 (suppl 1),
D138
-
D141 (2004)
53. Bateman, A., et al.: The Pfam protein families database. Nucleic Acids Res. 30 (1), 276
-
280
-
(2002)
54. Gough, J., Chothia, C.: SUPERFAMILY: HMMs representing all proteins of known structure.
SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 30 (1),
268
272 (2002)
55. Ma, J., et al.: MRFalign: protein homology detection through alignment of Markov random
fields. PLoS Comput. Biol. 10 (3), e1003500 (2014)
56. Yona, G., Levitt, M.: Within the twilight zone: a sensitive pro le-pro le comparison tool
based on information theory. J. Mol. Biol. 315 (5), 1257 - 1275 (2002)
-
Search WWH ::




Custom Search