Information Technology Reference
In-Depth Information
5. Fl ö ckner, H., et al.: Progress in fold recognition. Proteins Struct. Funct. Bioinf. 23 (3), 376 -
386 (1995)
6. Eddy, S.R.: Pro le hidden Markov models. Bioinformatics 14 (9), 755 - 763 (1998)
7. Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science 294 (5540),
93 - 96 (2001)
8.
ali, A., et al.: Evaluation of comparative protein modeling by MODELLER. Proteins Struct.
Funct. Bioinf. 23 (3), 318
Š
326 (1995)
9. Fariselli, P., et al.: The WWWH of remote homolog detection: the state of the art. Briefings
Bioinf. 8 (2), 78
-
87 (2007)
10. Wan, X.-F., Xu, D.: Computational methods for remote homolog identification. Curr. Protein
Pept. Sci. 6 (6), 527
-
546 (2005)
11. Madera, M., Gough, J.: A comparison of pro le hidden Markov model procedures for remote
homology detection. Nucleic Acids Res. 30 (19), 4321
-
4328 (2002)
12. Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices
from protein sequences. Comput. Appl. Biosci. CABIOS 8 (3), 275
-
282 (1992)
13. Grigoriev, I.V., Kim, S.-H.: Detection of protein fold similarity based on correlation of amino
acid properties. Proc. Natl. Acad. Sci. 96 (25), 14318 - 14323 (1999)
14. Deschavanne, P., Tuffery, P.: Exploring an alignment free approach for protein classi cation
and structural class prediction. Biochimie 90 (4), 615 - 625 (2008)
15. Jaakkola, T., Diekhans, M., Haussler, D.: A discriminative framework for detecting remote
protein homologies. J. Comput. Biol. 7 (1 - 2), 95 - 114 (2000)
16. Kuang, R., et al.: Profile-based string kernels for remote homology detection and motif
extraction. J. Bioinf. Comput. Biol. 3 (03), 527
-
550 (2005)
17. Leslie, C.S., Eskin, E., Noble, W.S.: The spectrum kernel: a string kernel for SVM protein
classification. In: Pacific Symposium on Biocomputing (2002)
18. Liao, L., Noble, W.S.: Combining pairwise sequence similarity and support vector machines
for detecting remote protein evolutionary and structural relationships. J. Comput. Biol. 10 (6),
857
-
868 (2003)
19. Jaakkola, T., Diekhans, M., Haussler, D.: Using the Fisher kernel method to detect remote
protein homologies. In: ISMB (1999)
20. Leslie, C.S., et al.: Mismatch string kernels for discriminative protein classi cation.
Bioinformatics 20 (4), 467
-
476 (2004)
21. Byvatov, E., Schneider, G.: Support vector machine applications in bioinformatics. Appl.
Bioinf. 2 (2), 67 - 77 (2002)
22. Jebara, T.: Machine Learning: Discriminative and Generative. Springer, Berlin (2004)
23. Balakrishnan, S., et al.: Learning generative models for protein fold families. Proteins Struct.
Funct. Bioinf. 79 (4), 1061 - 1078 (2011)
24. Thomas, J., Ramakrishnan, N., Bailey-Kellogg, C.: Protein design by sampling an undirected
graphical model of residue constraints. IEEE/ACM Trans. Comput. Biol. Bioinf. 6 (3), 506 -
516 (2009)
25. Shen, H.-B., Chou, K.-C.: Ensemble classifier
-
for protein fold pattern recognition.
1722 (2006)
26. Tan, A., Gilbert, D., Deville, Y.: Multi-class protein fold classification using a new ensemble
machine learning approach (2003)
27. Dehzangi, A., Phon-Amnuaisuk, S., Dehzangi, O.: Using random forest for protein fold
prediction problem: an empirical study. J. Inf. Sci. Eng. 26 (6), 1941
Bioinformatics 22 (14), 1717
-
1956 (2010)
-
28. Lundstr
m, J., et al.: Pcons: a neural-network-based consensus predictor that improves fold
recognition. Protein Sci. 10 (11), 2354
ö
2362 (2001)
29. McGuf n, L.J., Jones, D.T.: Improvement of the GenTHREADER method for genomic fold
recognition. Bioinformatics 19 (7), 874
-
881 (2003)
30. Zakeri, P., et al.: Protein fold recognition using geometric kernel data fusion. Bioinformatics
btu118 (2014)
-
Search WWH ::




Custom Search