Geoscience Reference
In-Depth Information
[363] S. Somiya, Hydrothermal reaction sintering of oxides, in: G.S. Upadhyaya (Ed.),
Sintered Metal-Ceramic Composites, Elsevier, Amsterdam, 1984, pp. 97 105.
[364] S. Somiya, Hydrothermal reactions in inorganic systems, in: Advanced Materials,
1993, VI/Frontiers in Materials Science and Engineering, S. Somiya et al., (Eds),
Trans. Mat. Res. Soc. Jpn., 19B (1994) 1105 1134.
[365] H. Toraya, M. Yoshimura, S. Somiya, Densification and grain growth in hydrothermal
reaction sintering of Hafnia (HfO 2 ), Yogyo Kyokai Shi 91 (1983) 235
240.
[366] G. Pfoff, A. Feltz, Solid state reactivity and mechanisms in oxide systems. VI.
Sintering behavior of hematite prepared by the hydrothermal method, Solid State
Ionics 38 (1990) 25 29.
[367] S. Yin, Y. Fujishiro, S. Uchida, T. Sato, Low temperature sintering and mechanical
properties of ceria and yttria co-doped zirconia crystallized in supercritical methanol,
in: Proceedings of the Second International Conference on Solvothermal Reactions,
(N. Yamasaki, and K. Yanagisawa Eds) Takamatsu, Japan, December 18 20, 1996,
pp. 27 30.
[368] W. Zhu, C.C Wang, S.A. Akbar, R. Asiale, Fast-sintering of hydrothermally synthe-
sized BaTiO 3 powders and their dielectric properties, J. Mater. Sci. 32 (1997)
4303 4307.
[369] A.J. Ruys, M. Wei, C.C. Sorrell, M.R. Dickson, A. Brandwood, B.K. Milthorpe,
Sintering effects on the strength of hydroxyapatite, Biomaterials 16 (1995)
409 415.
[370] W. Suchanek, M. Yashima, M. Kakihana, M. Yoshimura, Hydroxyapatite ceramics
with selected sintering additives, Bioceramics 18 (1997) 923 933.
[371] M.K. Krage, Microwave sintering of ferrites, Am. Ceram. Soc. Bull. 60 (1981)
1232 1234.
[372] R. Roy, S. Komarneni, L.J. Yang, Controlled microwave heating and melting of gels,
J. Am. Ceram. Soc. 68 (1985) 392 395.
[373] S. Komarneni, R. Roy, Anomalous microwave preparation of mullite powders, in: M.
H. Brooks, I.J. Chabinsky, W.H. Sutton (Eds), Proceedings of the Materials Research
Society Symposium Microwave Processing of Materials, vol. 124, Materials Research
Society, Pittsburgh, PA, 1988.
[374] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, et al., The use
of microwave ovens for
rapid organic synthesis, Tetrahedron Lett. 27 (1986)
279 282.
[375] R.J. Gigure, T.L. Bray, S.M. Duncan, G. Majetich, Application of commercial micro-
wave ovens to organic synthesis, Tetrahedron Lett. 27 (1986) 4945 4948.
[376] D.R. Baghurst, D.M.P. Mingos, M.J. Watson, Application of microwave dielectric
loss heating effects for the rapid and convenient synthesis of organometallic com-
pounds, J. Organomet. Chem. 368 (1989) C43 C45.
[377] D.L. Greene, D.M.P. Mingos, Application of microwave dielectric loss heating effects
for the rapid and convenient synthesis of ruthenium (11) polypyridine complexes,
Transit. Met. Chem. 16 (1991) 71 72.
[378] K. Chatakondu, M.L.H. Green, D.M.P. Mingos, S.M. Reynolds, Application of micro-
wave dielectric loss heating effects for the rapid and convenient synthesis of intercala-
tion compounds, J. Chem. Soc. Chem. Commun. (1989) 1515 1517.
[379] V.C. Virtuli, P. Chu, F.G. Dwyer, Crystallization Method Using Microwave
Radiation, US Patent Application 4778666, 1988.
[380] A. Arafat, J.C Jensen, A.R. Ebaid, H. Van Bekkum, Microwave preparation of zeolite
Y and ZSM-5, Zeolites 13 (1993) 162 165.
Search WWH ::




Custom Search