Geoscience Reference
In-Depth Information
[316] M.E. Pilleux, C.R. Grahmann, V.M. Fuenzalida, R. Avila, Hydrothermal ABO 3
ceramic thin films, Appl. Surf. Sci. 65/66 (1993) 283 290.
[317] K. Tachibana, A new pressure-balanced outer reference electrode with oxidized zircaloy
tube container for corrosion studies in high-temperature high-pressure aqueous solution
and its application to obtaining polarization curves, Boshoku Gijutsu 34 (1985) 125 131.
[318] D.D. Macdonald, A.C Scott, P. Wentrcek, External reference electrodes for use in
high-temperature aqueous systems, J. Electrochem. Soc. 126 (1979) 908
911.
[319] P.A. Psaras, H.D. Langford (Eds), Advancing Materials Research, National Academy
Press, Washington, DC, 1987. p. 274.
[320] Y. Yokogawa, F. Nagata, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, et
al., HAp formation on polymeric substrate in the presence of polyacrylic acid, Apatite
2 (1997) 67 70.
[321] Y. Fujishiro, T. Sato, A. Okuwaki, Coating of hydroxyapatite on metal plates using
thermal dissociation of calcium-EDTA chelate in phosphate solutions under hydro-
thermal conditions, J. Mater. Sci. Mater. Med. 6 (1995) 172 176.
[322] S.F. Hulbert, J.H. Dove, Fatigue properties of a polymethylmethacrylate HAp com-
posite bone cement, Apatite 2 (1997) 57 60.
[323] S. Ban, T. Hanaichi, S. Maruno, Microstructure of electrochemically deposited apatite
on the HA G Ti composite, Apatite 2L (1997) 11 14.
[324] K.S. Tenhuisen, P.W. Brown, C.S. Reed, H.R. Allcock, Low temperature synthesis of
a self-assembling composite: HAp-poly [bis (sodium carboxylatophenoxy) phospha-
zene], J. Mater. Sci. Mater. Med. 7 (1996) 673 682.
[325] A.B. Loyall, HAp composites move closer to reality, Bio. Med. Technol. Alert, 3 (40)
(1997) 4 5.
[326] W. H ¨ land, W. Vogel, Machineable and phosphate glass ceramics, in: L.L. Hench,
J. Wilson (Eds), An Introduction to Bioceramics, World Scientific, London,
1993Adv. Ser. Ceram., 1, 125.
[327] W. H¨ land, V. Rheinberger, M. Frank, S. Wegner, in: T. Kokubo, T. Nakamura, F.
Miyaji (Eds), Bioceramics, in: Proceedings of the Ninth International Symposium
Ceramics in Medicine, 1996, Otsu, Japan, Pergamon Press, Oxford, 1996, p. 445.
[328] W. Bonfield, Hydroxyapatite-reinforced polyethylene as an analogous materials for
bone replacement, in: P. Ducheyne, J. Lemons (Eds), Bioceramics: Materials
Characteristics Versus in vivo Behavior, Annals of New York Academy of Science,
New York, NY, 1988, pp. 173 177.
[329] W. Bonfield, C. Doyle, K.E. Tanner, In vivo evaluation of hydroxyapatite-reinforced
polyethylene composites, in: P. Christel, A. Meunier, A.J.C. Lee (Eds), Biological
and Biological and Biomechanical Performance of Materials, Elsevier, New York,
NY, 1986, p. 153.
[330] J. Huang, L. Di Silvo, M. Wang, K.E. Tanner, W. Bonfield, In vitro mechanical and
biological assessment of hydroxyapatite-reinforced polyethylene composite, J. Mater.
Sci. Mater. Med. 8 (1997) 775 779.
[331] R.A. Laudise, Growth of Single Crystals, Prentice-Hall, New Jersey, NJ, 1970.
[332] H.J. Scheel, Historical introduction, in: D.T.J. Hurle (Ed.), Handbook of Crystal
Growth, vol. 4, Elsevier, Amsterdam, 1993.
[333] F. Nagata, Y. Yokogawa, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, et
al., Hydrothermal synthesis of plate-like hydroxyapatite crystals, in: H. Aoki (Ed.),
Advanced Materials, '93, IIA: Biomaterials, Organic and Intelligent Materials,
Elsevier, 1994Trans. Mat. Res. Soc. Jpn., vol. 15A
Search WWH ::




Custom Search