Geoscience Reference
In-Depth Information
[248] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry,
quantum-size-related properties, and applications toward biology, catalysis, and nano-
technology, Chem. Rev. 104 (2004) 293 346.
[249] M. Brust, M. Walkder, D. Bethell, D.J. Schiffrin, R.J. Whyman, Synthesis of thiol
derivatized gold nanoparticles in a 2-phase liquid liquid system, Chem. Soc., Chem.
Commum. (1994) 801
802.
[250] J.H. Fendler, F. Meldrum, Colloid chemistry approach to nanostructured materials,
Adv. Mater. 7 (1995) 607 631.
[251] S. Yamamuro, D.G. Farrell, S.A. Majetich, Direct imaging of self-assembled mag-
netic nanoparticle arrays: phase stability and magnetic effects on morphology, Phys.
Rev. B65 (2002) 224431.
[252] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly
monodisperse CdE (E 5 sulfur, selenium, tellurium) semiconductor nanocrystallites,
J. Am. Chem. Soc 115 (1993) 8706 8715.
[253] C.B. Murray, C.R. Kagan, M.G. Bawendi, Self-organization of CdSe nanocrystallites
into three-dimensional quantum dot superlattices, Science 270 (1995) 1335 1338.
[254] C.B. Murray, Watching nanocrystals grow, Science 324 (2009) 1276 1277.
[255] J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical
nanocrystals, Angew. Chem. Int. Ed. 46 (2007) 4630.
[256] P.A. Kralchevsky, N.D. Denkoy, Capillary forces and structuring in layers of colloid
particles, Curr. Opin. Colloid Interface Sci. 6 (2001) 383 401.
[257] N. Christiansen, R.E. Riman, Bioceramics: a future through microstructural and
chemical design, in: Proceedings of the Fifth Scandinavian Symposium Materials
Science, New Materials and Processes, (N. Yamasaki, and K. Yamagisawa Eds) May
22 23, 1989, pp. 209 220.
[258] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991)
1487 1510.
[259] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705 1728.
[260] F. Hubert, J.C Bokros, L.L. Hench, J. Wilson, G. Heimke, Ceramics in clinical appli-
cations: past, present and future, in: P. Vincenzini (Ed.), High Tech Ceramics,
Elsevier, Amsterdam, 1987, pp. 189 213.
[261] L.L. Hench, J. Wilson, An Introduction to Bioceramics, World Scientific, London,
UK, 1993.
[262] J.F. Shackelford, Bioceramics—current status and future trends, Mater. Sci. Forum.
293 (1999) 99 106.
[263] de K. Groot, Bioceramics of Calcium Phosphate, CRC Press, Boca Raton, FL, 1983.
[264] T. Yamamuro, L.L. Hench, J. Wilson (Eds), Handbook of Bioactive Ceramics, Vol. II.,
Calcium Phosphate and Hydroxylapatite Ceramics, CRC Press, Boca Raton, FL, 1990.
[265] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based bio-
materials for use as hard tissue replacement implant, J. Mater. Res. 13 (1998) 1 24.
[266] M. Yoshimura, H. Suda, Hydrothermal processing of HAp: past, present and future,
in: P.W. Brown, B. Constantz (Eds), Hydroxyapatite and Related Compounds, CRC
Press, Cleveland, OH and Boca Raton, FL, 1994, p. 45.
[267] J.C. Elliott, Structure
and Chemistry of
the Apatites
and Other Calcium
Orthophosphates, Elsevier, Amsterdam, 1994.
[268] K. Ioku, M. Yoshimura, S. Somiya, Microstructure-designed HAp ceramics from fine
single crystals synthesized hydrothermally, in: H. Oonishi, H. Aoki, K. Sawai (Eds),
Bioceramics, Proceedings of the First International Bioceramics, Symposium,
Ishiyaku Euro-America Inc., Tokyo St. Louis, 1989, pp. 62 67.
Search WWH ::




Custom Search