Geoscience Reference
In-Depth Information
[229] H. Fan, Z. Chen, C.J. Brinker, J. Clawson, T. Alam, Synthesis of organo-silane func-
tionalized nanocrystal micelles and their self-assembly, J. Am. Chem. Soc. 127
(2005) 13746 13747.
[230] J.D. Miller, H. Ishida, Quantitative monomolecular coverage of inorganic particulates
by methacryl-functional silanes, Surf. Sci. 148 (1984) 601 622.
[231] J.D. Miller, H. Ishida, Quantitative analysis of covalent bonding between substituted
silanes and inorganic surfaces, J. Chem. Phys. 83 (1987) 1593
1600.
[232] Y. Kera, M. Kamada, Y. Hanada, H. Kominami, Chemical modification of metal
oxide carrier's surfaces with a silane coupling agent and an application of the method
to catalyst preparation, Compos. Interfaces 8 (2001) 109 119.
[233] C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for
rationally assembling nanoparticles into macroscopic materials, Nature 323 (1996)
607 609.
[234] J.J. Storhoff, C.A. Mirkin, Programmed materials synthesis with DNA, Chem. Rev.
99 (1999) 1849 1862.
[235] A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr.,
et al., Organization of nanocrystal molecules using DNA, Nature 382 (1996)
609 613.
[236] J. Lu, K. Minami, S. Takami, M. Shibata, Y. Kaneko, T. Adschiri, Supercritical
hydrothermal synthesis and in situ organic modification of indium tin oxide nanopar-
ticles using continuous flow reaction system, Appl. Mater. Interfaces 4 (2012)
351 354.
[237] T. Mousavand, S. Takami, M. Umetsu, S. Ohara, T. Adschiri, Supercritical hydrother-
mal synthesis of organic inorganic hybrid nanoparticles, J. Mater. Sci. 41 (2006)
1445 1448.
[238] T. Togashi, M. Umetsu, T. Naka, S. Ohara, Y. Hatakayama, T. Adchiri, One-pot
hydrothermal synthesis of an assembly of magnetite nanoneedles on a scaffold of
cyclic-diphenyalanine nanorods, J. Nanopart. Res. 13 (2011) 3991 3999.
[239] K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midley, T.W. Hansen, et al.,
Structural and morphological characterization of cerium dioxide nanocrystals pre-
pared by hydrothermal synthesis, Nano Lett. 7 (2007) 421 425.
[240] T. Mousavand, S. Ohara, M. Umetsu, J. Zhang, S. Takami, T. Naka, et al.,
Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in
supercritical water, J. Supercrit. Fluids 40 (2007) 397 401.
[241] M.P. Pileni, Nanocrystal self assemblies:
fabrication and collective properties,
J. Phys. Chem. B105 (2001) 3358 3372.
[242] J. Dutta, H. Hofmann, Self-organization of colloidal nanoparticles, Encycl. Nanosci.
Nanotechnol. 9 (2003) 617 640.
[243] A.C. Templeton, W.P. Wuelfing, R.W. Murray, Monolayer-protected cluster mole-
cules, Acc. Chem. Res. 33 (2000) 27 36.
[244] A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nano-crystals, Small 4
(2008) 310 325.
[245] J.E. Martin, J.P. Wilcoxon, J. Odinek, P. Provencio, Control of the interparticle spac-
ing in gold nanoparticle superlattices, J. Phys. Chem. B104 (2000) 9475 9486.
[246] A.K. Boal, V.M. Rotello, Intra- and inter-monolayer hydrogen bonding in amide
functionalized alkanethiol SAMs on gold nanoparticles, Langmuir 16 (2000)
9527 9532.
[247] J. Kolny, A. Kornowski, H. Weller, Self-organization of cadmium sulfide and gold
nanoparticles by electrostatic interaction, Nano Lett. 2 (2002) 361 364.
Search WWH ::




Custom Search