Geoscience Reference
In-Depth Information
[104] T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal crystalliza-
tion of bohemite particles in subcritical and supercritical water, J. Am. Ceram. Soc.
75 (1992) 2615 2620.
[105] T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal crystallization of
metal oxide particles in supercritical water, J. Am. Ceram. Soc. 75 (1992) 1019 1025.
[106] S. Takami, S. Ohara, T. Adschiri, Y. Wakayama, T. Chikyow, Continuous synthesis
of organic
inorganic hybridized cubic nanoassemblies of octahedral cerium oxide
nanocrystals and hexanedioic acid, Dalton Trans. 40 (2008) 5442 5446.
[107] C. Sun, H. Li., H. Zhang, Z. Wang, L. Chen, Controlled synthesis of Ceo2 nanorods
by a solvothermal method, Nanotechnology 16 (2005) 1454 1463.
[108] T. Chudoba, E. Lester, W. Lojkowski, M. Poliakoff, J. Li, E. Grzanka, et al.,
Synthesis of nano-sized yttrium aluminum garnet in a continuous-flow reactor in
supercritical fluids, Z. Naturforsch. B 63 (2008) 756 764.
[109] H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in
supercritical water, Materials 3 (2010) 3794 3817, doi:10.3390/ma3073794.
[110] X. Jiao, D. Chen, L. Xiao, Effects of organic additives on the hydrothermal zirconia
nanocrystallites, J. Cryst. Growth 258 (2003) 158 162.
[111] R. Wang, K. Hashimoti, A. Fujishima, Light induced amphiphilic surfaces, Nature
388 (1997) 431 432.
[111a] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor
electrode, letters to nature, Nature 238 (1972) 37 38.
[112] T. Saito, T. Iwase, J. Horie, T. Morioka, Mode of photocatalytic bactericidal action
of powdered semiconductor TiO 2 on mutans streptococci, J. Photochem. Photobiol.,
B Biol. 14 (1992) 369 379.
[113] Z. Kertesz, Z. Szikszai, E. Gontier, P. Moretto, J.E. Surleve-Bazeille, B Kiss, et al.,
Nuclear microprobe study of TiO 2 —penetration in the epidermis of human skin
xenografts, Nucl. Instrum. Methods Phys. Res B231 (2005) 280 285.
[114] S.H. Lee, H.W. Kim, E.J. Lee, L.H. Li, H.E. Kim, Hydroxyapatite-TiO 2 hybrid coat-
ing on Ti implants, J. Biomater. Appl. 20 (2006) 195 208.
[115] D.W. Stickler, W.G. Carlson, Electrical conductivity in the ZrO 2 -rich region of sev-
eral M 2 O 3
289.
[116] C. Guiot, Utilization de cristaux liquides minerourx comme “template” pour,
L'elaboration de solide hybride. Mesostructure, Ph.D. Thesis, Universite de
Montpellier, France, 2009.
[117] J. Peral, X. Domenech, D.f. Ollis, Photocatalytic functional coating of TiO 2 thin film
deposited by cyclic plasmal chemical vapor deposition at atmospheric pressure,
Chem. Tech. Biotech 70 (1997) 117 122.
[118] A.L. Linsebigler, G. Yates, Photocatalysis on TiO 2 surfaces: Principles, mechanisms,
and selected results, Chem. Rev. 95 (1995) 735 758.
[119] M.R. Hoffman, S. Martin, W. Choi, D.W. Bahnmann, Environmental applications of
semiconductor photocatalysis, Chem. Rev. 95 (1995) 69 96.
[120] H. Hayashi, K. Torii, Hydrothermal synthesis of titania photocatalyst under subcriti-
cal and supercritical water conditions, J. Mater. Chem. 12 (2002) 3671 3676.
[121] S. Somiya, T. Kumaki, K. Hishinuma, Z. Nakai, T. Akiba, Y. Suwa, Hydrothermal
precipitation of ZrO 2 powder, in: K. Byrappa (Ed.), Hydrothermal Growth of
Crystals, in: Prog. Cryst. Growth Charact. 21 (1990) 195 198.
[122] H. Yin, P.S. Casey, M.J. McCall, M. Fenech, Effects of surface chemistry on cyto-
toxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO
nanoparticles, Langmuir 26 (2010) 15399 15408.
ZrO 2 systems, J. Am. Ceram. Soc. 48 (1965) 286
Search WWH ::




Custom Search