Geoscience Reference
In-Depth Information
[12] L.G. Benning, T.M. Seward, Hydro-sulphide complexing of Au(I) in hydrothermal
solutions from 150 400 C and 500 1500 bar, Geochim. Cosmochim. Acta 60 (1996)
1849 1871.
[13] P.J. Renders, T.M. Seward, The stability of hydrosulphido- and sulphido complexes of
Au (I) and Ag (I) at 25 C, Geochim. Cosmochim. Acta 53 (1989) 244 253.
[14] L.G. Benning, T.M. Seward, Hydrosulphide complexes of gold (I) At high pressures
and temperatures: equilibrium and kinetics problems, Mineral. Mag. 58A (1994)
75 76.
[15] O.M. Suleimenov, T.M. Seward, Spectrophotometric determination of the first
ion: sat. constant of hydrogen sulphide at high temperatures, in: Y.K. Kharaka,
O.V. Chudaev (Eds), Water Rock Interaction 2 8, Balkema Press, The Netherlands,
1995, pp. 113 115.
[16] V.I. Popolitov, Hydrothermal synthesis of semiconductor compounds group A V 2 B III 3
and A V B VI C VII , Ph.D. Thesis, Institute of Crystallography, Akademy Nauka, USSR,
1969.
[17] V.I. Popolitov, B.N. Litvin, Synthesis of monocrystals of ternary chalcohalogenides
(A V B VI C VII ), Investigations of Processes of Crystallization Under Hydrothermal
Conditions, Nauka, Moscow, 1970, pp. 55 68.
[18] A. Rabenau, H. Rau, Kristalgr ยด eu en chemische synthese under hydrothermale cond-
ities, Philips Techn. Tijdschr. 30 (1969) 94 101.
[19] A. Christoph, P. Gorlich, U. Ludke, Synthese Au, Krist. Techn. 1 (1966) 563 568.
[20] E.D. Kolb, R.A. Laudise, Solubility of Se in Na 2 S, J. Cryst. Growth 8 (1971)
191 196.
[21] V.I. Popolitov, A.Y. Shapiro, G.F. Plakhov, Chemical interaction in systems
Te a R a H 2 O(R 5 HF, HCl, HBr, CH 3 COOH, CHOOH, C 2 H 2 O 3 ) under high pressures
temperatures, J. Phys. Chem. 55 (1982) 1229 1233.
[22] B.V. Derjaguin, B.V. Spitsyn, L.L. Bouliov, A.A. Klochkov, A.E. Gorodetsk, A.E.
Smolyanov, Synthesis of diamond crystals on non-diamond substrates, Sov. Phys. 21
(1976) 676 679.
[23] S. Matsumoto, Y. Sato, M. Kamo, N. Setaka, Vapor deposition of diamond particles
from methane, J. Appl. Phys. 42 (1982) L183
L186.
[24] F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamonds, Nature 176
(1955) 51 54.
[25] W.A. Bassett, Diamond anvil cell, 50th birthday, High Pres. Res. 29 (2009) 163 186.
[26] R.C. De Vries, Synthesis of diamond under metastable conditions, Ann. Rev. Mater.
Set. 17 (1987) 161 187.
[27] D. Ravichandran, R. Roy, Growth of diamond on diamond substrates in presence of an
alkali and metal under hydrothermal conditions, Mater. Res. Bull. 31 (1996)
1075 1082.
[28] R. Roy, K.A. Cherian, J.P. Cheng, A. Badzian, C. Langlade, H. Dewan, W. Drawl,
Precipitation of diamond from MexCyHz solutions at 1 atm, Mater. Res. Innov. 1
(1997) 117 129.
[29] A. Szymanski, E. Abgarowicz, A. Bakon, A. Niedbalska, R. Slalcinski, J. Sentek,
Diamond formed at low pressures and temperatures through liquid phase hydrothermal
synthesis, Diamond and Relat. Mater. 4 (1995) 234 235.
[30] A.A. Chaidarov, D.S. Gafitullina, K.P. Argunov, Nuclear Physical Methods of
Diamond Quality Control, FAN, Tashkent, 1986, pp. 115 133 (Russian).
[31] W.L. Tauson, M.G. Abramowicz, Physicochemical Transformations of Real Crystals
in Mineral Formations, Nauka, Novosibirsk, 1988. p. 110 (Russian).
Search WWH ::




Custom Search