Geoscience Reference
In-Depth Information
[34] T.M. Seward, Metal complex formation in aqueous solutions at elevated temperatures
and pressures, in: D.T. Rickard, F.E. Wichman (Eds), Chemistry and Geochemistry of
Solutions at High Temperatures and Pressures, Pergamon Press, New York, NY, 1979,
pp. 113 132. Proceedings of the Noble Symposium, 13/14.
[35] E.U. Franck, Survey of selected non-thermodynamic properties and chemical phenom-
ena of fluids and fluids mixtures, in: D.T. Rickard, F.E. Wichman (Eds), Chemistry
and Geochemistry of Solutions at High Temperatures and Pressures, Pergamon Press,
New York, NY, 1979, pp. 65 88. Proceedings of the Noble Symposium, 13/14.
[36] D.C. Hurd, Factors affecting the solution rate of biogenic opal in seawater, Earth
Planet. Sci. Lett. 15 (1972) 411 417.
[37] P.M. Dove, D.A. Crerar, Kinetics of quartz dissolution in electrolyte solutions using a
hydrothermal mixed flow reactor, Geochim. Cosmochim. Acta 54 (1990) 955 959.
[38] R.W. Henley, Solubility of gold in hydrothermal chloride solutions, Chem. Geol. 11
(1973) 73 87.
[39] H. Honma, N. Shikazono, M. Nakata, Hydrothermal synthesis of gold, electrum and
argentite, Can. Min. 29 (1991) 217 221.
[40] T.M. Seward, Hydrothermal solution speciation (solvation to ion pairing and complex-
ing), in: D.A. Palmer, D.J. Wesolowski (Eds), Proceedings of the Fifth International
Symposium on Hydrothermal Reactions, Gatlinburg, USA,
July 20 24, 1997,
pp. 7 9.
[41] L.G. Benning, T.M. Seward, Hydrosulphide complexing of Au 1 1 in hydrothermal solu-
tions from 150 400 C and 500 1500 bar, Geochim Cosmochim Acta 60 (1996)
1849 1871.
[42] G.R. Kolonin, G.A. Palyanova, G.P. Shironosova, K.G. Morgunov, The effect of car-
bon dioxide on internal equilibria in the fluid during the formation of hydrothermal
gold deposits, Geochem. Int. 35 (1997) 40 50.
[43] G.A. Palyanova, G.P. Shironosova, L.V. Laptev, G.R. Kolonin, Experimental checking of
CO 2 influence on gold and silver solubility in high-temperature complex fluids, in: D.A.
Palmer, D.I. Wesolowski (Eds), Proceedings of the Fifth International Symposium on
Hydrothermal Reactions, Gatlinburg, USA, July 20 24, 1997, pp. 255 256.
[44] R.H. Jahns, C.W. Burnham, Experimental studies of pegmatites genesis: I.A. Model
for the derivation and crystallization of granitic pegmatites, Econ. Geol. 64 (1969)
843 864.
[45] R.H. Jahns, Internal evolution of pegmatite bodies, in: P. Cerny (Ed.), Granitic
Pegmatites in Science and Industry, Mineral Association of Canadian Short Course
Handbook, 8, 1982, pp. 293 327.
[46] O.F. Turtle, N.L. Bowen, Origin of granite in the light of experimental studies in the
system NaAlSi 3 O 4 KalSi 3 O 4 SiO 4 H 2 O, Geol. Soc. Am. Mem. 74 (1958).
[47] W.C. Luth, R.H. Jahns, O.F. Tuttle, The granite system at pressures of 4 to 10 kbars,
J. Geophys. 69 (1964) 759 773.
[48] C.W. Burnham, Water and magmas: a mixing model, Geochim. Cosmochim. Acta 39
(1975) 1007 1084.
[49] C.W. Burnham, Magmas and hydrothermal fluids, in: Barnes (Ed.), Geochemistry of
Hydrothermal Ore Deposits, second ed., John Wiley & Sons, New York, NY, 1979,
pp. 71 136.
[50] H.R. Shaw, Obsidian—H 2 O viscosities at 1000 and 2000 bars in the temperature range
700 to 900 C, J. Geophys. 68 (1963) 6337 6343.
[51] H.R. Shaw, Comments on viscosity, crystal settling and convection in granitic magmas,
Am. J. Sci. 263 (1965) 120 152.
Search WWH ::




Custom Search