Geoscience Reference
In-Depth Information
[12] M.M. Lencka, A. Anderko, R.E. Riman, Hydrothermal precipitation of lead zirconate
titanate solid solutions: thermodynamic modeling and experimental synthesis, J. Am.
Ceram. Soc. 78 (1995) 2609 2618.
[13] J.O. Eckert Jr., C.C. Hung-Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics
and mechanisms of hydrothermal synthesis of barium titanate, J. Am. Ceram. Soc. 79
(1996) 2929
2939.
[14] G.W. Morey, P. Niggli, The hydrothermal formation of silicates, a review, J. Am.
Chem. Soc. 35 (1913) 1086 1130.
[15] R.A. Laudise, The Growth of Single Crystals, Prentice-Hall, Englewood Cliffs, NJ,
1970, pp. 278 281
[16] A. Rabenau, The role of hydrothermal synthesis in preparative chemistry, Angew.
Chem. Int. Engl. Ed. 24 (1985) 1026 1040.
[17] A.N. Lobachev (Ed.), Crystallization Processes under Hydrothermal Conditions,
Consultants Bureau, New York, NY, 1973.
[18] R. Roy, Acceleration the kinetics of low-temperature inorganic syntheses, J. Solid
State Chem. 111 (1994) 11 17.
[19] K. Byrappa (Ed.), Hydrothermal Growth of Crystals, Pergamon Press, Oxford, UK, 1992.
[20] M. Yoshimura, H. Suda, Hydrothermal processing of hydroxyapatite: past, present, and
future, in: P.W. Brown, B. Constanz (Eds), Hydroxyapatite and Related Materials,
CRC Press, Inc., Boca Raton, FL, 1994, pp. 45 72.
[21] M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and
future, J. Mat. Sci. 43 (2008) 2085 2103.
[22] R. Roy, Fifty-year perspective on hydrothermal research, in: Proceedings of the
Workshop on Solvothermal and Hydrothermal Reactions, Sun Messe Kagawa, January
22 24, 1996, pp. 1.1 1.20.
[23] G. Tamma, The State of Aggregation, D. VanNostrand Company, Princeton, NJ, 1925.
[24] Proceedings of the First International Conference, Solvothermal Reactions, Takamatsu,
Japan, December 5 7, 1994, pp. 1 223.
[25] Proceedings of the Workshop on Solvothermal and Hydrothermal Reactions, Sun
Messe Kagawa, Japan, January 22
133.
[26] Proceedings of the Second International Conference on Solvothermal Reactions,
Takamatsu, Japan, December 18 20, 1996, pp. 1 242.
[27] K. Byrappa, Novel hydrothermal solution routes of advanced high melting nanomater-
ials processing, J. Ceram. Soc. Japan 117 (2009) 236 244.
[28] M. Yoshimura, Why, and how about advanced inorganic materials, Eur. J. Solid State
Inorg. Chem. 32 (1995) I IV.
[29] B.N. Litvin, D.A. Tules, Apparatus for hydrothermal synthesis and growth of single
crystals, Hydrothermal Synthesis of Crystals, Nauka, Moscow, 1968 (in Russian).
[30] T. Mousavand, Synthesis of Organic Inorganic Hybrid Nanoparticles by In situ
Surface Modification under Supercritical Hydrothermal Conditions, Ph.D. Thesis,
Tohoku University, Sendia, Japan, 2007.
[31] S. Ohara, T. Mousavand, T. Sasaki, M. Umetsu, T. Naka, T. Adschiri, Continuous pro-
duction of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water,
J. Mater. Sci. 43 (2008) 2393 2396.
[32] K. Namratha, M.B. Nayan, K. Byrappa, Hydrothermal synthesis and photocatalytic
properties of modified and unmodified zinc oxide nanoparticles, Mater. Res. Innov. 15
(2011) 36 42.
[33] T.M. Seward, The stability of complexes of silver in hydrothermal solutions up to
350 C, Geochim. Cosmochim. Acta 40 (1976) 1329 1341.
24, 1996, pp. 1
Search WWH ::




Custom Search