Geoscience Reference
In-Depth Information
[116] J.G. Carmona, R.R. Clemente, J.G. Morales, Comparative preparation of microporous
VPI-5 using conventional and microwave heating techniques, Zeolites 18 (1997)
340 346.
[117] H. Ghobarkar, The morphology of some hydrothermally synthesized Li- minerals:
A Z, α -eucryptite, β -spodumene and β -eucryptite, Cryst. Res. Technol. 27 (1992)
181
185.
[118] H. Ghobarkar, O. Schaf, The morphology of hydrothermally synthesized natrolite,
Cryst. Res. Technol. 31 (1996) K54 K57.
[119] H. Ghobarkar, O. Schaf, Hydrothermal synthesis and morphology of thomsonite and
edingtonite, Cryst. Res. Technol. 32 (1997) 653 657.
[120] H. Ghobarkar, O. Schaf, The morphology of hydrothermally synthesized mesolite,
Cryst. Res. Technol. 31 (1996) K67 K69.
[121] A. Kuperman, S. Nadimi, S. Oliver, G.A. Ozin, J.M. Garces, M. Olken, Non-aqueous
synthesis of giant crystals of zeolites and molecular sieves, Nature 365 (1993)
239 242.
[122] O.K. Mel'nikov, B.N. Litvin, N.S. Triodina, Crystallization of sodalite on a seed,
in: A.N. Lobachev (Ed.), Crystallization Processes Under Hydrothermal Conditions,
Consultants Bureau, New York, NY, 1973, pp. 151 172.
[123] L.N. Demianets, E.N. Emelyanova, O.K. Mel'nikov, Solubility of sodalite in various
solutions of NaOH under hydrothermal conditions, in: A.N. Lobachev (Ed.),
Crystallization Processes Under Hydrothermal Conditions, Consultant Bureau, New
York, NY, 1973, pp. 125 149.
[124] G.M. Johnson, M.T. Weller, Synthesis and characterization of gallium and germanium
containing sodalites, in: H. Chon, S.K. Ihm, Y.S. Uh (Eds.), Progress in Zeolite and
Microporous Materials, 105, 1997, Studies in Surface Science and Catalysis.
[125] D.M. Bibby, P. Dale, Synthesis of silica-sodalite from nonaqueous systems, Nature
317 (1985) 157 158.
[126] J. Lemberg, Ueber Silicatumwandlungen, Z. Deut. Geol. Gesell 33 (1883) 579 611.
[127] O. Carlgren, P.T. Cleve, Uber Einige Ammoniakalische Platinverbindungen, Z.
Anorg. Chem. 2 (1892) 65
75.
[128] T. Hayashi, H. Shiga, M. Sadakata, T. Okubo, Hydrothermal growth of millimeter-
sized aluminosilicate sodalite single crystals in noble metal capsules, J. Mater. Res.
13 (1998) 891 895.
[129] S.T. Wilson, E.M. Flanigen, Synthesis and characterization of metal aluminopho-
sphate molecular sieves, in: M.L. Occelli, H.E. Robson (Eds.), Zeolite Synthesis,
American Chemical Society, Washington, DC, 1989.
[130] X. Ren, S. Komarneni, D.M. Roy, The role of gel chemistry in synthesis of alumino-
phosphate molecular sieves, Zeolites 11 (1996) 142 148.
[131] M.E. Davis, C. Montes, J.M. Garces, Synthesis of VPI-5, in: Boran Drˇaj, Stanko
Hoˇevar, Stane Pejovnik (Eds.), Zeolite Synthesis, American Chemical Society,
Washington, DC, 1989, pp. 291 304.
[132] C.C. Freyhardt, M. Tsapatsis, R.F. Lobo, K.J. Balkus Jr., M.E. Davis, A high-silica
zeolite with a 14-tetrahedra-atom pore opening, Nature 384 (1996) 295 296.
[133] W. Schmidt, F. Schuth, H. Reichert, K. Unger, B. Zibrowius, VPI-5 and related alu-
minophosphates: preparation and thermal stability, Zeolites 12 (1992) 2 8.
[134] L. Maistriau, Z. Gabelica, E.G. Derouane, E.T.C. Vogt, J. Van Oene, Solid-state
NMR study of the transformation of VPI-5/MCM-9 into AlPO4-8/SAPO-8, Zeolites
11 (1991) 583 592.
Search WWH ::




Custom Search