Geoscience Reference
In-Depth Information
[34] A.F. Armington, J.J. Larkin, The growth of high purity,
low dislocation quartz,
J. Cryst. Growth 71 (1985) 799 806.
[35] E.D. Kolb, K. Nassau, R.A. Laudise, E.E. Simpson, K.M. Kronpa, New sources of
quartz nutrient for the hydrothermal growth of quartz, J. Cryst. Growth 36 (1976)
93 100.
[36] M. Hosaka, T. Miyata, Hydrothermal growth of
α
-quartz using high-purity
α
-cristoba-
1208.
[37] V.A. Avakov, B.N. Vinogradov, Solubility of SiO 2 polymorphs, Izv. Vyssh. Ucheb.
Zaved. Khim. Teknol. 17 (1972) 879 882.
[38] M. Hosaka, Synthesis of micro α -quartz crystals by hydrothermal hot-press method,
J. Cryst. Growth 112 (1991) 291.
[39] J.G. Spezia, La Pressione e chimicament inattiva nella solubilita e ricostituzione del
Quarzo, Atti Accad. Sci. Torino Contribuzioni di Geologia Chimica 40 (1905)
254 262.
[40] N. Wooster, W.A. Wooster, Preparation of synthetic quartz, Nature 157 (1946) 297.
[41] A.A. Shternberg, Controlling the growth of crystals in autoclaves, in: A.N. Lobachev
(Ed.), Crystallization Processes Under Hydrothermal Conditions, Consultants Bureau,
New York, NY, 1973, pp. 225 240.
[42] L.N. Demianets, E.N. Emelyanova, O.K. MelniKoV, Solubility of sodalite in aqueous
solutions of NaOH under hydrothermal conditions, in: A.N. Lobachev (Ed.),
Crystallization Processes Under Hydrothermal Conditions, Consultants Bureau, New
York, NY, 1973, pp. 125 150.
[43] M. Hosaka, S. Taki, Hydrothermal growth of quartz crystals in NaCl solution, J. Cryst.
Growth 100 (1990) 343 346.
[44] R.A. Laudise, A.A. Ballman, The solubility of quartz under hydrothermal conditions, J.
Phys. Chem. 65 (1961) 1396 1400.
[45] M. Hosaka, S. Taki, Hydrothermal growth of quartz crystals in NaCl solution, J. Cryst.
Growth 52 (1981) 837 842.
[46] F. Lafon, G. Demazean, Pressure effects on the solubility and crystal growth of
α
lite as feed material, Mat. Res. Bull. 28 (1993) 1201
-quartz, J. de Physique IV, 4[C 2 ] (1994) 177 182.
[47] J.J. Martin, A.F. Armington, Effect of growth rate on quartz defects, J. Cryst. Growth
62 (1983) 203 206.
[48a] R.A. Laudise, What is materials chemistry? in: S.R. Marder, J.E. Sohn, G.D. Stucky
(Eds.), Materials for Nonlinera Optics (Chemical Perspectives), American Chemical
Society, Washington, DC, 1991, pp. 410-433.
[48b] R.A. Laudise, A.A. Ballman, J.C. King, Impurity content of synthetic quartz and its
effect upon mechanical Q, J. Phys. Chem. Solids 26 (1965) 1305-1308.
[49] J. Yoshimura, T. Miyazaki, T. Wada, K. Kohra, T. Ogawa, S. Taki, J. Cryst. Growth
46 (1979) 691 700.
[50] F. Iwasaki, M. Kurashige, BaTiO 3 thin film by hydrothermal electrochemical method,
J. Appl. Phys. 17 (1978) 817 820.
[51] P.M. Dove, N. Han, J.De Yoreo, Mechanism of classical crystal growth theory explain
quartz and silicate dissolution behavior, Proc. Nat. Acad. Sci. U.S.A. 102 (2005)
15357 15362.
[52] G.T. Ostapenko, B.M. Mitsyuk, Asymmetry of growth and dissolution on basal, minor
rhombohedral and prism faces of quartz, J. Cryst. Growth 294 (2006) 330 338.
[53] G.R. Johnson, R.A. Irvine, J.W. Foise, A parametric study of the variables involved in
quartz growth, in: IEEE Proceedings of the 44th Annual Symposium on Frequency
Control, Baltimore, MD, 1990, pp. 216 221.
Search WWH ::




Custom Search