Geoscience Reference
In-Depth Information
[113] X. Han, D. Zhang, Z. Zhong, F. Yang, N. Wei, K. Zheng, et al., Theoretical design
and experimental study of hydrothermal synthesis of KNbO 3 , J. Phys. Chem. Solids
69 (2008) 193 198.
[114] J. Joo, B.Y. Chow, M. Prakash, E.S. Boyden, J.M. Jacobson, Face-selective electro-
static control of hydrothermal zinc oxide nanowire synthesis, Nat. Mater. 10 (2011)
596
601.
[115] S.J. Nejad, A. Golzary, Experimental design for the optimization of hydrothermal
synthesis of samarium oxide (Sm 2 O 3 ) nanoparticles under supercritical water condi-
tions, Int. J. Chem. Engg. Appl. 2 (2011) 243 247.
[116] Environmental and Corrosion Simulation Program (ESP/CSP) version 6.7, OLI
Systems, Inc., Morris Plains, NJ, 2010.
[117] B.L. Gersten, Influences of the A and B Site Cation Species in the Kinetics of
Hydrothermal Synthesis of ABO 3 Perovskite-Type Materials, Ph.D. Thesis, Rutgers
University, NJ, USA, 1999.
[118] J.C. Tanger, H.C. Helgeson, Calculation of the thermodynamic and transport proper-
ties of aqueous species at high pressures and temperatures: revised equations of state
for the standard partial molal properties of ions and electrolytes, Am. J. Sci. 281
(1981) 1249 1428.
[119] A. Seidell, third ed., Solubilities of Inorganic and Metal Organic Compounds, vol. 1,
D. Van Nostrand Company, Inc., New York, NY, 1940.
[120] E.F. Linke, A. Seidell, fourth ed., Solubilities of Inorganic and Metal Organic
Compounds, vol. 2, American Chemical Society, Washington, DC, 1965.
[121] M.M. Lencka, R.E. Riman, Hydrothermal synthesis of perovskite materials: thermo-
dynamic modeling and experimental verification, Ferroelectrics 151 (1994) 159 164.
[122] M. Uematsu, Thermophysical properties of supercritical fluids, in: Y. Arai, T. Sako, Y.
Takebayashi (Eds.), Supercritical Fluids—Molecular Interaction, Physical Properties,
and New Applications, Springer, Germany, 2002, pp. 71 78.
Search WWH ::




Custom Search