Geoscience Reference
In-Depth Information
[18] S.M. Sterner, A.R. Felmy, J.R. Rustad, K.S. Pitzer, Thermodynamic analysis of aque-
ous solutions using INSIGHT, in: D.A. Palmer, D.J. Wesolowski (Eds.), Proceedings
of the Fifth International Symposium on Hydrothermal Reactions, Gatlinburg, TN,
USA, July 20 24, 1997, pp. 35 38.
[19] P.W. Atkins, Physical Chemistry, ELBS, Oxford University Press, Oxford, 1986.
p. 745.
[20] G.A. Krestov, Thermodynamics of solvation, Ellis Horwood, New York (1998) p. 16.
[21] K. Deidler, Kinetics of Organic Reactions M, Mir, Moscow, 1966. p. 237
[22] M. Uematsu, E.U. Franck, Static dielectric constant of water and steam, J. Phys. Chem.
Ref. Data 9 (1980) 1291 1297.
[23] G.C. Kennedy, W.T. Holser, Pressure volume temperature and phase relations of
water and carbon dioxide, in: S.P. Clark Jr. (Ed.), Handbook of Physical Constants,
Geological Society of America, Washington, DC, 1966, pp. 371 383.
[24] H. K¨ster, E.U. Franck, Das spezifische volumen des Wassers be: Hohen Dr¨cken bis
600 C und 100 kbar, Ber. Bunsenges 73 (1969) 716 722.
[25] K. T¨dheide, Water at high temperatures and pressures, in: F. Franks (Ed.), Water A
Comprehensive Treatise, vol. 1, Plenum Press, New York, NY, 1972.
[26] P.T. Cummings, Molecular simulation of supercritical water and of ionic association in
supercritical aqueous solutions, in: D.A. Palmer, D.J. Wesolowski (Eds.), Proceedings
of the Fifth International Symposium on Hydrothermal Reactions, Gatlinburg, TN,
USA, July 20 24, 1997, pp. 153 156.
[27] H.C. Helgeson, D.H. Kirkham, G.C. Flowers, Theoretical prediction of the thermody-
namic behavior of aqueous electrolytes at high pressures and temperatures: IV.
Calculation of activity coefficients, osmotic coefficients, and apparent molal and stan-
dard and relative partial molal properties to 600 C and 5 kb, Am. J. Sci. 281 (1981)
1249 1516.
[28] G.M. Anderson, S. Castet, J. Schoot, R.E. Mesmer, The density model for estimation
of thermodynamic parameters of reactions at high temperatures and pressures,
Geochim. Cosmochim. Acta 55 (1991) 1769 1779.
[29] E.U. Franck, Special aspects of fluid solutions at high pressure and sub- and supercriti-
cal temperatures, Pure Appl. Chem. 53 (1981) 1401
1416.
[30] R.E. Riman, M.M. Lencka, L.E. McCandlish, B.L. Gersten, A. Andrenko, S.B. Cho,
Intelligent engineering of hydrothermal reactions, in: D.A. Palmer, D.J. Wesolowski
(Eds.), Proceedings of the Fifth International Symposium on Hydrothermal Reactions,
Gatlinburg, TN, USA, July 20 24, 1997, pp. 74 78.
[31] M.M. Lencka, R.E. Riman, Thermodynamics of the hydrothermal synthesis of calcium
titanate with reference to other alkaline-earth titanates, Chem. Mater. 7 (1995) 18 25.
[32] M.M. Lencka, R.E. Riman, Thermodynamic modeling of hydrothermal synthesis of
ceramic powders, Chem. Mater. 5 (1993) 61 70.
[33] W.E. Brown, L.C. Chow, Thermodynamics of apatite crystal growth and dissolution,
J. Cryst. Growth 53 (1981) 31 41.
[34] L.G. Benning, T.M. Seward, Hydrosulphide complexing of Au 1 1 in hydrothermal solu-
tions from 150 400 C and 500 1500 bar, Geochim. Cosmochim. Acta 60 (1996)
1849 1871.
[35] M. Woitsekhowskaya, R. Roberts, J. Cline, J.J. Hemley, K. Weaver, Gold and arsenic
in iron sulfides from the Getchell deposit, Nevada: thermodynamic evaluation, in: D.A.
Palmer, D.J. Wesolowski (Eds.), Proceedings of the Fifth International Symposium on
Hydrothermal Reactions, Gatlinburg, TN, USA, July 20 24, 1997, p. 301.
Search WWH ::




Custom Search