Geoscience Reference
In-Depth Information
[74] E.U. Franck, Hochverdichteter Wasserdampf
I. Elektrolytische Leitfahigkeit
in
KCl H 2 O Losungen bis 750 C, Zeit. Physik. Chem. 8 (1956) 92 106.
[75] E.U. Franck, Experimental Investigations of Fluids at High Pressures and Elevated
Temperatures, North American Treaty Organization (NATO) Advanced Study
Institute, 1978 Series C, C41 (High Pressure Chemistry).
[76] E.U. Frauck, Survey of selected non-thermodynamic properties and chemical phenom-
ena of fluids and fluids mixtures, in: D.T. Rickard, F.E. Wickman (Eds.), Chemistry
and Geochemistry of Solutions at High Temperatures and Pressures, 13/14, Pergamon
Press, New York, NY, 1979 Proceedings of Noble Symposium.
[77] T.M. Seward, The stability of chloride complexes of silver in hydrothermal solutions
up to 350 C, Geochim. Cosmochim. Acta 40 (1976) 1329 1341.
[78] T.M. Seward, Metal complex formation in aqueous solutions at elevated temperatures
and pressures, in: D.T. Rickard, F.E. Wickman (Eds.), Chemistry and Geochemistry of
Solutions at High Temperatures and Pressures, 13/14, Pergamon Press, New York, NY,
1979Proceedings of Noble Symposium.
[79] W.L. Marshall, Conductances and equilibria of aqueous electrolytes over extreme
ranges of temperature and pressure, Pure Appl. Chem. 18 (1968) 167 186.
[80] W.L. Marshall, Complete equilibrium constants, electrolyte equilibria and reaction
rates, J. Phy. Chem. 74 (1970) 346 355.
[81] B.N. Ryzhenko, A conductance cell for use at high temperatures and pressures,
Geokhimiya 1963 (1963) 41.
[82] B.S. Smolyakov, Limiting equivalent ionic conductances up to 200 C, International
Corrosion Conference Series, Proceedings of the High Temperature High Pressure
Electrochemistry in Aqueous Solutions Conference (NACE-4), in: D. de G. Jones and
R.W. Staehle, (Eds.), National Association of Corrosion Engineers ,Houston, TX,
1976, pp. 177 2 181.
[83] H.C. Helgeson, D.H. Kirkham, Theoretical prediction of the thermodynamic behav-
ior of aqueous electrolytes at high pressures and temperature: I: summary of the
thermodynamic/electrostatic properties of the solvent, Am. J. Sci. 274 (1974)
1089 1198.
[84] H.C. Helgeson, D.H. Kirkham, Theoretical prediction of the thermodynamic behavior
of aqueous electrolytes at high pressures and temperature, III: equation of state for
aqueous species at infinite dilution, Am. J. Sci. 276 (1976) 97 240.
[85] A.S. Quist, W.L. Marshall, Electrical conductances of aqueous sodium chloride solutions
from 0 to 800 C and to pressures to 4000 bars, J. Phy. Chem. 72 (1968) 684 703.
[86] W.L. Marshall, J.D. Frantz, Electrical conductance measurements of dilute, aqueous
electrolytes at temperatures to 800 C and pressures to 4000 bars, techniques and inter-
pretations, in: G.C. Ulmer, H.L. Barnes (Eds.), Hydrothermal Experimental
Techniques, John Wiley & Sons, New York, NY, 1987, pp. 261 292.
[87] D.B. Hawkins, R. Roy, Electrolytic synthesis of kaolinite under hydrothermal condi-
tions, J. Am. Ceram. Soc. 45 (1962) 507 508.
[88] M. Yoshimura, S.-E. Yoo, M. Hayashi, N. Ishizawa, Preparation of BaTiO 3 thin film by
hydrothermal electrochemical method, Jpn. J. Appl. Phys. 28 (1989) L2007 L2009.
[89] W.-S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, Room-
temperature preparation of highly crystallized luminescent SrWO 4 film by an electro-
chemical method, J. Am. Ceram. Soc. 78 (1995) 3110 3112.
[90] K. Kajiyoshi, Y. Hamaji, K. Tomono, T. Kasanami, M. Yoshimura, Microstructure of
strontium titanate thin film grown by the hydrothermal electrochemical method,
J. Am. Ceram. Soc. 79 (1996) 613 619.
Search WWH ::




Custom Search