Environmental Engineering Reference
In-Depth Information
paleotrophodynamics. Ultimately, further progress in the identification of key
ichnotaxa and index ichnocoenoses indicative for specific environmental prop-
erties and their application to fossil material of any age will tell whether micro-
bioerosion analysis meets its potential of becoming a more regularly applied
tool in the characterization of paleoenvironments and sedimentary settings.
ACKNOWLEDGMENTS
Ingrid Glaub (Frankfurt, Germany) and Katrin Heindel (Erlangen, Germany) are acknowl-
edged for fruitful discussions and their critical perusal of an earlier draft of this chapter. Help-
ful reviews and comments were provided by Gudrun Radtke (Wiesbaden, Germany) and the
editors.
REFERENCES
Akpan, E.B., Farrow, G.E., 1984. Shell-boring algae on the Scottish continental shelf: identification,
distribution, bathymetric zonation. Transact. R. Soc. Edinburgh 75, 1-12.
Anagnostidis, K., Pantazidou, A., 1988. Endolithic cyanophytes from the saline thermal springs of
Aedipsos, Hellas (Greece). Algolog. Stud./Arch. Hydrobiol. 50-53 (Suppl.), 555-559.
Barton, H.A., Jurado, V., 2007. What's up down there? Microbial diversity in caves. Microbe 2,
132-138.
Beuck, L., Vertino, A., Stepina, E., Karolczak, M., Pfannkuche, O., 2007. Skeletal response of
Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-
computed tomography. Facies 53, 157-176.
Beuck, L., Wisshak, M., Munnecke, A., Freiwald, A., 2008. A giant boring in a Silurian stromato-
poroid analysed by computer tomography. Acta Palaeont. Polon. 53, 149-160.
Boekschoten, G.J., 1970. On bryozoan borings from the Danian at Fakse, Denmark. In: Crimes, T.P.,
Harper, J.C. (Eds.), Trace Fossils. Geol. J., Spec. Iss. 3, pp. 43-48.
Bromley, R.G., Wisshak, M., Glaub, I., Botquelen, A., 2007. Ichnotaxonomic review of dendrini-
form borings attributed to foraminiferans: Semidendrina igen. nov. In: Miller III, W. (Ed.),
Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 518-530.
Budd, D.A., Perkins, R.D., 1980. Bathymetric zonation and paleoecological significance of micro-
borings in Puerto Rican shelf and slope sediments. J. Sediment. Petrol. 50, 881-904.
Bundschuh, M., Balog, S.-J., 2000. Fasciculus rogus nov. isp., an endolithic trace fossil. Ichnos 7,
149-152.
Butterfield, N.J., Knoll, A.H., Swett, K., 1990. A bangiophyte red alga from the Proterozoic of
Arctic Canada. Science 250, 104-107.
Campbell, S.E., 1982. Petrochemical pollution: endolithic response. In: Vies Journ ยด es ` tudiants
Pollutions, Cannes, C.I.E.S.M, pp. 183-187.
Campbell, S.E., Kazmierczak, J., Golubic, S., 1979. Palaeoconchocelis starmachii gen. n., sp. n., an
endolithic rhodophyte (Bangiaceae) from the Silurian of Poland. Acta Palaeont. Polon. 24,
403-408.
Carreiro-Silva, M., McClanahan, T.R., Kiene, W.E., 2005. The role of inorganic nutrients and
herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24, 214-221.
Carreiro-Silva, M., McClanahan, T.R., Kiene, W.E., 2009. Effects of inorganic nutrients and organic
matter on microbial euendolithic community composition and microbioerosion rates. Marine
Ecol. Prog. Ser. 392, 1-15.
Search WWH ::




Custom Search