Biology Reference
In-Depth Information
58. Serre L, Pereira de Jesus K, Boiteux S, Zelwer C, Castaing B. Crystal structure of the
Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site
analogue-containing DNA. EMBO J 2002;
:2854-65.
59. Fromme JC, Verdine GL. DNA lesion recognition by the bacterial repair enzyme MutM. J
Biol Chem 2003;
21
:51543-8.
60. Coste F, Ober M, Carell T, Boiteux S, Zelwer C, Castaing B. Structural basis for the
recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by
formamidopyrimidine-DNA glycosylase. J Biol Chem 2004;
278
:44074-83.
61. Doubli ´ S, Bandaru V, Bond JP, Wallace SS. The crystal structure of human endonuclease
VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc Natl
Acad Sci USA 2004;
279
:10284-9.
62. Golan G, Zharkov DO, Feinberg H, Fernandes AS, Zaika EI, Kycia JH, et al. Structure of the
uncomplexed DNA repair enzyme endonuclease VIII indicates significant interdomain flex-
ibility. Nucleic Acids Res 2005;
101
:5006-16.
63. Pereira de Jesus K, Serre L, Zelwer C, Castaing B. Structural insights into abasic site for Fpg
specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg
bound to various models of abasic site analogues-containing DNA. Nucleic Acids Res
2005;
33
:5936-44.
64. Banerjee A, Santos WL, Verdine GL. Structure of a DNA glycosylase searching for lesions.
Science 2006;
33
:1153-7.
65. Qi Y, Spong MC, Nam K, Banerjee A, Jiralerspong S, Karplus M, et al. Encounter and
extrusion of an intrahelical lesion by a DNA repair enzyme. Nature 2009;
311
:762-6.
66. Qi Y, Spong MC, Nam K, Karplus M, Verdine GL. Entrapment and structure of an extra-
helical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM.
J Biol Chem 2010;
462
:1468-78.
67. Imamura K, Wallace SS, Doubli ´ S. Structural characterization of a viral NEIL1 ortholog
unliganded and bound to abasic site-containing DNA. J Biol Chem 2009;
285
:26174-83.
68. Coste F, Ober M, Le Bihan YV, Izquierdo MA, Hervouet N, Mueller H, et al. Bacterial base
excision repair enzyme Fpg recognizes bulky N7-substituted-FapydG lesion via unproductive
binding mode. Chem Biol 2008;
284
:706-17.
69. Le Bihan YV, Angeles Izquierdo M, Coste F, Aller P, Culard F, Gehrke TH, et al. 5-Hydroxy-5-
methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. Nucleic Acids Res
2011;
15
:6277-90.
70. Verdine GL, Norman DP. Covalent trapping of protein-DNA complexes. Annu Rev Biochem
2003;
39
:337-66.
71. Fromme JC, Banerjee A, Verdine GL. DNA glycosylase recognition and catalysis. Curr Opin
Struct Biol 2004;
72
:43-9.
72. Zharkov DO, Shoham G, Grollman AP. Structural characterization of the Fpg family of DNA
glycosylases. DNA Repair (Amst) 2003;
14
:839-62.
73. Guo Y, Bandaru V, Jaruga P, Zhao X, Burrows CJ, Iwai S, et al. The oxidative DNA glycosylases
of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia
coli counterparts. DNA Repair (Amst) 2010;
2
:177-90.
74. Zaika EI, Perlow RA, Matz E, Broyde S, Gilboa R, Grollman AP, et al. Substrate discrimination
by formamidopyrimidine-DNA glycosylase: a mutational analysis. JBiolChem 2004;
9
:
279
4849-61.
75. Michaels ML, Tchou J, Grollman AP, Miller JH. A repair system for 8-oxo-7,8-dihydrodeox-
yguanine. Biochemistry 1992;
:10964-8.
76. Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA. Recognition of damaged DNA by
Escherichia coli Fpg protein: insights from structural and kinetic data. Mutat Res 2003;
31
:
531
141-56.
Search WWH ::




Custom Search