Biology Reference
In-Depth Information
121. Dudev T, Lin YL, Dudev M, Lim C. First-second shell interactions in metal binding sites in
proteins: a PDB survey and DFT/CDM calculations. J Am Chem Soc 2003;
:3168-80.
122. Babu CS, Dudev T, Casareno R, Cowan JA, Lim C. A combined experimental and theoretical
study of divalent metal ion selectivity and function in proteins: application to E. coli ribonu-
clease H1. J Am Chem Soc 2003;
125
:9318-28.
123. Dudev M, Wang J, Dudev T, Lim C. Factors governing the metal coordination number in metal
complexes from Cambridge Structural Database analyses. JPhysChemB 2006;
125
110
: 1889-95.
124. Harding MM. The geometry of metal-ligand interactions relevant to proteins. Acta Crystal-
logr D Biol Crystallogr 1999;
:1432-43.
125. Harding MM. The architecture of metal coordination groups in proteins. Acta Crystallogr D
Biol Crystallogr 2004;
55
:849-59.
126. Harding MM. Small revisions to predicted distances around metal sites in proteins. Acta
Crystallogr D Biol Crystallogr 2006;
60
:678-82.
127. Dokmanic I, Sikic M, Tomic S. Metals in proteins: correlation between the metal-ion type,
coordination number and the amino-acid residues involved in the coordination. Acta Crystal-
logr D Biol Crystallogr 2008;
62
:257-63.
128. Ryde U. Carboxylate binding modes in zinc proteins: a theoretical study. Biophys J
1999;
64
:2777-87.
129. Karlin S, Zhu ZY. Classification of mononuclear zinc metal sites in protein structures. Proc
Natl Acad Sci USA 1997;
77
:14231-6.
130. Stoll KE, Draper WE, Kliegman JI, Golynskiy MV, Brew-Appiah RA, Phillips RK, et al.
Characterization and structure of the manganese-responsive transcriptional regulator ScaR.
Biochemistry 2009;
94
:10308-20.
131. Guedon E, Helmann JD. Origins of metal
48
ion selectivity in the DtxR/MntR family of
:495-506.
132. Jakubovics NS, Smith AW, Jenkinson HF. Expression of the virulence-related Sca (Mn2
metalloregulators. Mol Microbiol 2003;
48
)
permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like
protein ScaR. Mol Microbiol 2000;
รพ
:140-53.
133. Que Q, Helmann JD. Manganese homeostasis in Bacillus subtilis is regulated by MntR,
a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol
Microbiol 2000;
38
:1454-68.
134. Schmitt MP, Predich M, Doukhan L, Smith I, Holmes RK. Characterization of an iron-
dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog
of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect Immun
1995;
35
:4284-9.
135. Pohl E, Holmes RK, Hol WG. Crystal structure of the iron-dependent regulator (IdeR) from
Mycobacterium tuberculosis shows both metal binding sites fully occupied. J Mol Biol
1999;
63
:1145-56.
136. Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Solution structure and
peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin
repressor protein. Proc Natl Acad Sci USA 1999;
285
:6119-24.
137. Wisedchaisri G, Chou CJ, Wu M, Roach C, Rice AE, Holmes RK, et al. Crystal structures,
metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium
tuberculosis. Biochemistry 2007;
96
:436-47.
138. Wylie GP, Rangachari V, Bienkiewicz EA, Marin V, Bhattacharya N, Love JF, et al. Prolylpep-
tide binding by the prokaryotic SH3-like domain of the diphtheria toxin repressor: a regula-
tory switch. Biochemistry 2005;
46
:40-51.
139. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P. PCNA function in
the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl
Acad Sci USA 2010;
44
107
:16066-71.
Search WWH ::




Custom Search