Biology Reference
In-Depth Information
10. Taylor AM, Byrd PJ. Molecular pathology of ataxia telangiectasia.
J Clin Pathol
:1009-15.
11. Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, et al.
Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature
1975;
2005;
58
:427-9.
12. Lavin MF, Birrell G, Chen P, Kozlov S, Scott S, Gueven N. ATM signaling and genomic
stability in response to DNA damage. Mutat Res 2005;
258
:123-32.
13. Meyn MS. Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin Genet
1999;
569
:289-304.
14. Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, et al. The complete sequence of the
coding region of the ATM gene reveals similarity to cell cycle regulators in different species.
Hum Mol Genet 1995;
55
:2025-32.
15. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia
telangiectasia gene with a product similar to PI-3 kinase. Science 1995;
4
:1749-53.
16. Lempiainen H, Halazonetis TD. Emerging common themes in regulation of PIKKs and
PI3Ks. EMBO J 2009;
268
:3067-73.
17. Gilad S, Khosravi R, Shkedy D, Uziel T, Ziv Y, Savitsky K, et al. Predominance of null
mutations in ataxia-telangiectasia. Hum Mol Genet 1996;
28
:433-9.
18. Byrd PJ, McConville CM, Cooper P, Parkhill J, Stankovic T, McGuire GM, et al. Mutations
revealed by sequencing the 5' half of the gene for ataxia telangiectasia. Hum Mol Genet
1996;
5
:145-9.
19. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the
ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;
5
:1677-9.
20. Matsuoka S, Ballif BA, Smogorzewska A, McDonald 3rd ER, Hurov KE, Luo J, et al. ATM
and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.
Science 2007;
281
:1160-6.
21. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. Gamma-
H2AX and cancer. Nat Rev Cancer 2008;
316
:957-67.
22. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA
double-strand breaks in vivo. J Cell Biol 1999;
8
:905-16.
23. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly
binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand
breaks. Cell 2005;
146
:1213-26.
24. Stucki M, Jackson SP. gammaH2AX and MDC1: anchoring the DNA-damage-response
machinery to broken chromosomes. DNA Repair (Amst) 2006;
123
:534-43.
25. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, et al. RNF8 transduces the DNA-
damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007;
5
:
131
901-14.
26. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, et al. Orchestration of
the DNA-damage response by the RNF8 ubiquitin ligase. Science 2007;
:1637-40.
27. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, et al. RAP80 targets BRCA1 to
specific ubiquitin structures at DNA damage sites. Science 2007;
318
:1198-202.
28. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of
brca1 in the DNA damage response to double-strand breaks. Science 1999;
316
:1162-6.
29. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autopho-
sphorylation and dimer dissociation. Nature 2003;
286
:499-506.
30. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF. Involvement of novel
autophosphorylation sites in ATM activation. EMBO J 2006;
421
:3504-14.
31. Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M, et al. Autophosphorylation
and ATM activation: additional sites add to the complexity. J Biol Chem 2011;
25
:9107-19.
286
Search WWH ::




Custom Search