Biology Reference
In-Depth Information
2. Daley JM, Palmbos PL, Wu D, Wilson TE. Nonhomologous end joining in yeast. Annu Rev
Genet 2005; 39 :431-51.
3. Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in
Saccharomyces cerevisiae . Microbiol Mol Biol Rev 1999; 63 :349-404.
4. Smerdon MJ. DNA repair and the role of chromatin structure. Curr Opin Cell Biol
1991; 3 :422-8.
5. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem
2009; 78 :273-304.
6. van Vugt JJ, Ranes M, Campsteijn C, Logie C. The ins and outs of ATP-dependent chromatin
remodeling in budding yeast: biophysical and proteomic perspectives. Biochim Biophys Acta
2007; 1769 :153-71.
7. Flaus A, Martin DM, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2
subfamilies with conserved structural motifs. Nucleic Acids Res 2006; 34 :2887-905.
8. Bakshi R, Prakash T, Dash D, Brahmachari V. In silico characterization of the INO80
subfamily of SWI2/SNF2 chromatin remodeling proteins. Biochem Biophys Res Commun
2004; 320 :197-204.
9. Huertas D, Sendra R, Munoz P. Chromatin dynamics coupled to DNA repair. Epigenetics
2009; 4 :31-42.
10. Haber JE. Lucky breaks: analysis of recombination in Saccaromyces . Mutat Res 2000; 451 :
53-69.
11. Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in
DNA repair. Nature 2000; 408 :1001-4.
12. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks
induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273 :5858-68.
13. Redon C, Pilch DR, Rogakou E, Sedelnikova OA, Newrock K, Bonner WM. Histone H2A
variants H2AX and H2AZ. Curr Opin Genet Dev 2002; 12 :162-9.
14. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing
radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad
Sci USA 2002; 99 :8173-8.
15. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorf M, et al. Histone H2AX: a
dosage-dependent suppressor of oncogenic tranlocations and tumors. Cell 2003; 114 :359-70.
16. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA,
et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296 :922-7.
17. Celeste A, Difilppantonio S, Difilppantonio MJ, Fernandez-Capetillo O, Pilch DR,
Sedelnikova OA, et al. H2AX haploinsufficiency modifies genomic stability and tumor sus-
ceptibility. Cell 2003; 114 :371-83.
18. Matsuoka S, Ballif BA, Smogorzewska A, McDonald 3rd ER, Hurov KE, Luo J, et al. ATM
and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.
Science 2007; 316 :1160-6.
19. Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo
targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA 2007; 104 :10364-9.
20. Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. A proteome-wide analysis of
kinase-substrate network in the DNA damage response. J Biol Chem 2010; 285 :12803-12.
21. Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, et al. Distribution and
dynamics of chromatin modification induced by a defined DNA double-strand break. Curr
Biol 2004; 14 :1703-11.
22. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA
double-strand breaks in vivo. J Cell Biol 1999; 146 :905-15.
23. Chen HT, Bhandoola A, Difilippantonio MJ, Zhu J, Brown MJ, Tai X, et al. Response to
RAG-mediated V(D)J cleavage by NBS1 and g -H2AX. Science 2000; 290 :1962-4.
Search WWH ::




Custom Search