Biology Reference
In-Depth Information
11. Skorvaga M, DellaVecchia MJ, Croteau DL, Theis K, Truglio JJ, Mandavilli BS, et al.
Identification of residues within UvrB that are important for efficient DNA binding and
damage processing. J Biol Chem 2004;
:51574-80.
12. Skorvaga M, Theis K, Mandavilli BS, Kisker C, Van Houten B. The beta -hairpin motif of
UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J Biol
Chem 2002;
279
:1553-9.
13. Karakas E, Truglio JJ, Croteau D, Rhau B, Wang L, Van Houten B, et al. Structure of the
C-terminal half of UvrC reveals an RNase H endonuclease domain with an Argonaute-like
catalytic triad. EMBO J 2007;
277
:613-22.
14. Truglio JJ, Rhau B, Croteau DL, Wang L, Skorvaga M, Karakas E, et al. Structural insights
into the first incision reaction during nucleotide excision repair. EMBO J 2005;
26
:885-94.
15. Husain I, Van Houten B, Thomas DC, Abdel-Monem M, Sancar A. Effect of DNA polymer-
ase I and DNA helicase II on the turnover rate of UvrABC excision nuclease. Proc Natl Acad
Sci USA 1985;
24
:6774-8.
16. Kad NM, Wang H, Kennedy GG, Warshaw DM, Van Houten B. Collaborative dynamic DNA
scanning by nucleotide excision repair proteins investigated by single-molecule imaging of
quantum-dot-labeled proteins. Mol Cell 2010;
82
:702-13.
17. Malta E, Moolenaar GF, Goosen N. Dynamics of the UvrABC nucleotide excision
repair proteins analyzed by fluorescence resonance energy transfer. Biochemistry 2007;
37
:
46
9080-8.
18. Pakotiprapha D, Inuzuka Y, Bowman BR, Moolenaar GF, Goosen N, Jeruzalmi D, et al.
Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated
dimerization, UvrB interaction, and DNA binding. Mol Cell 2008;
:122-33.
19. Pakotiprapha D, Liu Y, Verdine GL, Jeruzalmi D. A structural model for the damage-sensing
complex in bacterial nucleotide excision repair. J Biol Chem 2009;
29
:12837-44.
20. DellaVecchia MJ, Croteau DL, Skorvaga M, Dezhurov SV, Lavrik OI, Van Houten B. Ana-
lyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling.
J Biol Chem 2004;
284
:45245-56.
21. Reardon JT, Sancar A. Thermodynamic cooperativity and kinetic proofreading in DNA
damage recognition and repair. Cell cycle (Georgetown, Tex.) 2004;
279
:141-4.
22. Luijsterburg MS, von Bornstaedt G, Gourdin AM, Politi AZ, Mone MJ, Warmerdam DO,
et al. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures
accurate target site recognition and efficient repair. J Cell Biol 2010;
3
:445-63.
23. Hopfield JJ. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic
processes requiring high specificity. Proc Natl Acad Sci USA 1974;
189
:4135-9.
24. Mellon I, Hanawalt PC. Induction of the Escherichia coli lactose operon selectively increases
repair of its transcribed DNA strand. Nature 1989;
71
:95-8.
342
25. Selby CP, Sancar A. Molecular mechanism of
transcription-repair coupling. Science
:53-8.
26. Gascon J, Oubina A, Perez-Lezaun A, Urmeneta J. Sensitivity of selected bacterial species to
UV radiation. Curr Microbiol 1995;
1993;
260
:177-82.
27. Chandrasekhar D, Van Houten B. In vivo formation and repair of cyclobutane pyrimidine
dimers and 6-4 photoproducts measured at the gene and nucleotide level in Escherichia coli.
Mutat Res 2000;
30
:19-40.
28. Chandrasekhar D, Van Houten B. High resolution mapping of UV-induced photoproducts in
the Escherichia coli lacI gene. Inefficient repair of the non-transcribed strand correlates with
high mutation frequency. J Mol Biol 1994;
450
:319-32.
29. Gruskin EA, Lloyd RS. Molecular analysis of plasmid DNA repair within ultraviolet-irradiated
Escherichia coli.II. UvrABC-initiated excision repair and photolyase-catalyzed dimer mono-
merization. J Biol Chem 1988;
238
:12738-43.
263
Search WWH ::




Custom Search