Biology Reference
In-Depth Information
189. Bork P, Blomberg N, Nilges M. Internal repeats in the BRCA2 protein sequence. Nat Genet
1996; 13 :22-3.
190. Bignell G, Micklem G, Stratton MR, Ashworth A, Wooster R. The BRC repeats are conserved
in mammalian BRCA2 proteins. Hum Mol Genet 1997; 6 :53-8.
191. Lo T, Pellegrini L, Venkitaraman AR, Blundell TL. Sequence fingerprints in BRCA2 and
RAD51: implications for DNA repair and cancer. DNA Repair (Amst) 2003; 2 :1015-28.
192. Holloman WK. Unraveling the mechanism of BRCA2 in homologous recombination. Nat
Struct Mol Biol 2011; 18 :748-54.
193. Chen C-F, Chen P-L, Zhong Q, Sharp ZD, Lee W-H. Expression of BRC repeats in breast
cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and
loss of G2/M checkpoint control. J Biol Chem 1999; 274 :32931-5.
194. Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a
RAD51-BRCA2 complex. Nature 2002; 420 :287-93.
195. Carreira A, Kowalczykowski SC. Two classes of BRC repeats in BRCA2 promote RAD51
nucleoprotein filament
function by distinct mechanisms. Proc Natl Acad Sci 2011;
108 :10448-53.
196. Shivji MKK, Mukund SR, Rajendra E, et al. The BRC repeats of human BRCA2 differentially
regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand
exchange. Proc Natl Acad Sci 2009; 106 :13254-9.
197. Shah PP, Zheng X, Epshtein A, Carey JN, Bishop DK, Klein HL. Swi2/Snf2-related translo-
cases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell
2010; 39 :862-72.
198. Solinger JA, Kiianitsa K, Heyer WD. Rad54, a Swi2/Snf2-like recombinational repair protein,
disassembles Rad51:dsDNA filaments. Mol Cell 2002; 10 :1175-88.
199. Petalcorin MIR, Sandall J, Wigley DB, Boulton SJ. CeBRC-2 stimulates D-loop formation by
RAD-51 and promotes DNA single-strand annealing. J Mol Biol 2006; 361 :231-42.
200. Esashi F, Christ N, Gannon J, et al. CDK-dependent phosphorylation of BRCA2 as a
regulatory mechanism for recombinational repair. Nature 2005; 434 :598-604.
201. Davies AA, Masson J-Y, McIlwraith MJ, et al. Role of BRCA2 in control of the RAD51
recombination and DNA repair protein. Mol Cell 2001; 7 :273-82.
202. Gildemeister OS, Sage JM, Knight KL. Cellular redistribution of Rad51 in response to DNA
damage. J Biol Chem 2009; 284 :31945-52.
203. Goggins M, Schutte M, Lu J, et al. Germline BRCA2 gene mutations in patients with
apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56 :5360-4.
204. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-
independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell
2011; 145 :529-42.
205. Hashimoto Y, Chaudhuri AR, Lopes M, Costanzo V. Rad51 protects nascent DNA from
Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol
Biol 2010; 17 :1305-11.
206. Thorslund T, Esashi F, West SC. Interactions between human BRCA2 protein and the
meiosis-specific recombinase DMC1. EMBO J 2007; 26 :2915-22.
207. Wong JMS, Ionescu D, Ingles CJ. Interaction between BRCA2 and replication protein A is
compromised by a cancer-predisposing mutation in BRCA2. Oncogene 2003; 22 :28-33.
208. Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia
subtype FA-N and predispose to childhood cancer. Nat Genet 2007; 39 :162-4.
209. Xia B, Sheng Q, Nakanishi K, et al. Control of BRCA2 cellular and clinical functions by a
nuclear partner, PALB2. Mol Cell 2006; 22 :719-29.
210. Dray E, Etchin J, Wiese C, et al. Enhancement of RAD51 recombinase activity by the tumor
suppressor PALB2. Nat Struct Mol Biol 2010; 17 :1255-9.
Search WWH ::




Custom Search