Biology Reference
In-Depth Information
103. Shim KS, Schmutte C, Yoder K, Fishel R. Defining the salt effect on human RAD51 activities.
DNA Repair (Amst) 2006; 5 :718-30.
104. Liu Y, Stasiak AZ, Masson JY, McIlwraith MJ, Stasiak A, West SC. Conformational changes
modulate the activity of human RAD51 protein. J Mol Biol 2004; 337 :817-27.
105. Schild D, Wiese C. Overexpression of RAD51 suppresses recombination defects: a possible
mechanism to reverse genomic instability. Nucleic Acids Res 2010; 38 :1061-70.
106. Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA
Repair (Amst) 2008; 7 :686-93.
107. Richardson C, Stark JM, Ommundsen M, Jasin M. Rad51 overexpression promotes alterna-
tive double-strand break repair pathways and genome instability. Oncogene 2004; 23 :546-53.
108. Morgan EA, Shah N, Symington LS. The requirement for ATP hydrolysis by Saccharomyces
cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Mol Cell
Biol 2002; 22 :6336-43.
109. Sung P, Stratton SA. Yeast Rad51 recombinase mediates polar DNA strand exchange in the
absence of ATP hydrolysis. J Biol Chem 1996; 271 :27983-6.
110. Chi P, Van Komen S, Sehorn MG, Sigurdsson S, Sung P. Roles of ATP binding and ATP
hydrolysis in human Rad51 recombinase function. DNA Repair (Amst) 2006; 5 :381-91.
111. Morrison C, Shinohara A, Sonoda E, et al. The essential functions of human Rad51 are
independent of ATP hydrolysis. Mol Cell Biol 1999; 19 :6891-7.
112. Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, Jasin M. ATP hydrolysis by mammalian
RAD51 has a key role during homology-directed DNA repair. JBiolChem 2002; 277 :20185-94.
113. Wu Y, Qian X, He Y, Moya IA, Luo Y. Crystal structure of an ATPase-active form of Rad51
homolog from Methanococcus voltae. Insights into potassium dependence. J Biol Chem
2005; 280 :722-8.
114. Qian X, He Y, Ma X, Fodje MN, Grochulski P, Luo Y. Calcium stiffens archaeal Rad51
recombinase from Methanococcus voltae for homologous recombination. J Biol Chem
2006; 281 :39380-7.
115. Qian X, Wu Y, He Y, Luo Y. Crystal structure of Methanococcus voltae RadA in complex with
ADP: hydrolysis-induced conformational change. Biochemistry 2005; 44 :13753-61.
116. Tombline G, Fishel R. Biochemical characterization of the human RAD51 protein. I. ATP
hydrolysis. J Biol Chem 2002; 277 :14417-25.
117. Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-
mediated recombination. Nature 2010; 467 :678-83.
118. Carreira A, Hilario J, Amitani I, et al. The BRC repeats of BRCA2 modulate the DNA-binding
selectivity of RAD51. Cell 2009; 136 :1032-43.
119. Yang H, Li Q, Fan J, Holloman WK, Pavletich NP. The BRCA2 homologue Brh2 nucleates
RAD51 filament formation at a dsDNA-ssDNA junction. Nature 2005; 433 :653-7.
120. Galkin VE, Esashi F, Yu X, Yang S, West SC, Egelman EH. BRCA2 BRC motifs bind RAD51-
DNA filaments. Proc Natl Acad Sci U S A 2005; 102 :8537-42.
121. Antony E, Tomko EJ, Xiao Q, Krejci L, Lohman TM, Ellenberger T. Srs2 disassembles Rad51
filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51
from DNA. Mol Cell 2009; 35 :105-15.
122. Hu Y, Raynard S, Sehorn MG, et al. RECQL5/Recql5 helicase regulates homologous recom-
bination and suppresses tumor formation via disruption of Rad51 presynaptic filaments.
Genes Dev 2007; 21 :3073-84.
123. Bugreev DV, Yu X, Egelman EH, Mazin AV. Novel pro- and anti-recombination activities of
the Bloom's syndrome helicase. Genes Dev 2007; 21 :3085-94.
124. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. The Srs2 helicase
prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 2003;
423 :309-12.
Search WWH ::




Custom Search