Biology Reference
In-Depth Information
60. Mimitou EP, Symington LS. Nucleases and helicases take center stage in homologous
recombination. Trends Biochem Sci 2009; 34 :264-72.
61. Lisby M, Rothstein R. Choreography of recombination proteins during the DNA damage
response. DNA Repair (Amst) 2009; 8 :1068-76.
62. Wu D, Topper LM, Wilson TE. Recruitment and dissociation of nonhomologous end joining
proteins
cerevisiae. Genetics
at
a DNA double-strand break
in Saccharomyces
2008; 178 :1237-49.
63. Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le CamE, Veaute X. The Srs2 helicase activity
is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during
mitotic recombination. Mol Cell 2008; 29 :243-54.
64. Lisby M, Barlow JH, Burgess RC, Rothstein R. Choreography of the DNA damage response:
spatiotemporal relationships among checkpoint and repair proteins. Cell 2004; 118 :699-713.
65. Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and
SIR proteins in response to DNA strand breaks in yeast. Cell 1999; 97 :621-33.
66. Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. Sae2 is an endonuclease that
processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell
2007; 28 :638-51.
67. Clerici M, Mantiero D, Lucchini G, Longhese MP. The Saccharomyces cerevisiae Sae2
protein promotes resection and bridging of double strand break ends. J Biol Chem
2005; 280 :38631-8.
68. Krejci L, Van Komen S, Li Y, et al. DNA helicase Srs2 disrupts the Rad51 presynaptic
filament. Nature 2003; 423 :305-9.
69. Huertas P, Jackson SP. Human CtIP mediates cell cycle control of DNA end resection and
double strand break repair. J Biol Chem 2009; 284 :9558-65.
70. Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. CDK targets Sae2 to
control DNA-end resection and homologous recombination. Nature 2008; 455 :689-92.
71. Huen MS, Chen J. Assembly of checkpoint and repair machineries at DNA damage sites.
Trends Biochem Sci 2010; 35 :101-8.
72. Huen MS, Sy SM, Chen J. BRCA1 and its toolbox for the maintenance of genome integrity.
Nat Rev Mol Cell Biol 2010; 11 :138-48.
73. Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR. BRG1 contains a con-
served domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcrip-
tion. Nature 1993; 366 :170-4.
74. Shim EY, Chung W-H, Nicolette ML, et al. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and
Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J
2010; 29 :3370-80.
75. Zhu Z, Chung W-H, Shim EY, Lee SE, Ira G. Sgs1 Helicase and Two Nucleases Dna2 and
Exo1 Resect DNA Double-Strand Break Ends. Cell 2008; 134 :981-94.
76. Mimitou EP, Symington LS. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break
processing. Nature 2008; 455 :770-4.
77. Schaetzlein S, Kodandaramireddy NR, Ju Z, et al. Exonuclease-1 deletion impairs DNA
damage signaling and prolongs
lifespan of
telomere-dysfunctional mice. Cell 2007;
130 :863-77.
78. Cejka P, Cannavo E, Polaczek P, et al. DNA end resection by Dna2-Sgs1-RPA and its
stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 2010; 467 :112-6.
79. Niu H, Chung W-H, Zhu Z, et al. Mechanism of the ATP-dependent DNA end-resection
machinery from Saccharomyces cerevisiae. Nature 2010; 467 :108-11.
80. Nimonkar AV, Genschel J, Kinoshita E, et al. BLM-DNA2-RPA-MRN and EXO1-BLM-
RPA-MRN constitute two DNA end resection machineries for human DNA break repair.
Genes Dev 2011; 25 :350-62.
Search WWH ::




Custom Search