Biology Reference
In-Depth Information
63. Sykora P, Croteau DL, Bohr VA, Wilson 3rd. DM. Aprataxin localizes to mitochondria and
preserves mitochondrial function. Proc Natl Acad Sci USA 2011;
:7437-42.
64. Longley MJ, Prasad R, Srivastava DK, Wilson SH, Copeland WC. Identification of
5 0 -deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in
mitochondrial base excision repair in vitro. Proc Natl Acad Sci USA 1998;
108
:12244-8.
65. Liu P, Demple B. DNA repair in mammalian mitochondria: much more than we thought?
Environ Mol Mutagen 2010;
95
:417-26.
66. Dou H, Mitra S, Hazra TK. Repair of oxidized bases in DNA bubble structures by human
DNA glycosylases NEIL1 and NEIL2. J Biol Chem 2003;
51
:49679-84.
67. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, et al. hUNG2 is the major
repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-
stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 2002;
278
:39926-36.
68. Arai T, Kelly VP, Minowa O, Noda T, Nishimura S. The study using wild-type and Ogg1
knockout mice exposed to potassium bromate shows no tumor induction despite an extensive
accumulation of 8-hydroxyguanine in kidney DNA. Toxicology 2006;
277
:179-86.
69. Chan MK, Ocampo-Hafalla MT, Vartanian V, Jaruga P, Kirkali G, Koenig KL, et al. Targeted
deletion of the genes encoding NTH1 and NEIL1 DNA N-glycosylases reveals the existence
of novel carcinogenic oxidative damage to DNA. DNA Repair (Amst) 2009;
221
:786-94.
70. Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK, et al.
Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol Cell Biol
2002;
8
:6111-21.
71. Russo MT, De Luca G, Degan P, Parlanti E, Dogliotti E, Barnes DE, et al. Accumulation of
the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the
Myh and Ogg1 DNA glycosylases. Cancer Res 2004;
22
:4411-4.
72. Takao M, Kanno S, Kobayashi K, Zhang QM, Yonei S, van der Horst GT, et al. A back-up
glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J Biol
Chem 2002;
64
:42205-13.
73. Vartanian V, Lowell B, Minko IG, Wood TG, Ceci JD, George S, et al. The metabolic
syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci
USA 2006;
277
:1864-9.
74. Banerjee D, Mandal SM, Das A, Hegde ML, Das S, Bhakat KK, et al. Preferential repair of
oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem
2011;
103
:6006-16.
75. Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, et al. The human Werner
syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase
NEIL1. J Biol Chem 2007;
286
:26591-602.
76. Dou H, Theriot CA, Das A, Hegde ML, Matsumoto Y, Boldogh I, et al. Interaction of the
human DNA glycosylase NEIL1 with proliferating cell nuclear antigen. The potential for
replication-associated repair of oxidized bases in mammalian genomes. J Biol Chem
2008;
282
:3130-40.
77. Hegde ML, Theriot CA, Das A, Hegde PM, Guo Z, Gary RK, et al. Physical and functional
interaction between human oxidized base-specific DNA glycosylase NEIL1 and flap endo-
nuclease 1. J Biol Chem 2008;
283
:27028-37.
78. Theriot CA, Hegde ML, Hazra TK, Mitra S. RPA physically interacts with the human DNA
glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template
structures. DNA Repair (Amst) 2010;
283
:643-52.
79. Das S, Chattopadhyay R, Bhakat KK, Boldogh I, Kohno K, Prasad R, et al. Stimulation of
NEIL2-mediated oxidized base excision repair via YB-1 interaction during oxidative stress.
J Biol Chem 2007;
9
:28474-84.
282
Search WWH ::




Custom Search