Biology Reference
In-Depth Information
Oxidized Base Damage and
Single-Strand Break Repair in
Mammalian Genomes: Role of
Disordered Regions and
Posttranslational
Modifications in Early
Enzymes
Muralidhar L. Hegde, *
Tadahide Izumi,
{
and
Sankar Mitra *
*Department of Biochemistry and
Molecular Biology, University of Texas
Medical Branch, Galveston, Texas, USA
{ Graduate Center for Toxicology, University
of Kentucky, Lexington, Kentucky, USA
I. Oxidative DNA Damage and Its Repair in Mammalian Cells. . . . . . . . . . . . . . . . . . . .
124
A. BER of Oxidized Bases and AP sites in Mammalian Genomes . . . . . . . . . . . . .
126
B. DG: The BER-initiating Enzyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
128
C. SSBR: A DG-independent Variant of BER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
129
D. BER/SSBR in Mammalian Mitochondria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
II. Complexity and Sub-pathways of BER/SSBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
A. Preferred and Backup Sub-pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
B. Role of Noncanonical Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
133
C. Repair Interactome: Preformed Complexes Versus Sequential
Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
133
III. Nonconserved Terminal Extensions in Mammalian Early BER Proteins . . . . .
134
A. Functions of Disordered Terminal Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
135
IV. Posttranslational Modifications in Early BER Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . .
137
A. Acetylation and Phosphorylation Modulate Repair Activity. . . . . . . . . . . . . . . . . .
137
B. Ubiquitylation and BER Protein Turnover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
V. BER/SSBR Deficiency in Human Diseases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
A. Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
140
B. Neurodegenerative Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
140
C. BER/SSBR as Cancer Therapeutic Targets: Are We at a Crossroad? . . . . .
142
VI. Conclusions and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
142
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
143
Oxidative genome damage induced by reactive oxygen species includes
oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are
repaired via the evolutionarily conserved base excision repair/single-strand
break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex,
 
Search WWH ::




Custom Search