Biology Reference
In-Depth Information
190. Licht CL, Stevnsner T, Bohr VA. Cockayne syndrome group B cellular and biochemical
functions. Am J Hum Genet 2003;
:1217-39.
191. Tuo J, Muftuoglu M, Chen C, Jaruga P, Selzer RR, Brosh Jr. RM, et al. The Cockayne
Syndrome group B gene product is involved in general genome base excision repair of
8-hydroxyguanine in DNA. J Biol Chem 2001;
73
:45772-9.
192. Muftuoglu M, de Souza-Pinto NC, Dogan A, Aamann M, Stevnsner T, Rybanska I, et al.
Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1
DNA glycosylase. J Biol Chem 2009;
276
284
:9270-9.
193. Thorslund T, von Kobbe C, Harrigan JA, Indig FE, Christiansen M, Stevnsner T, et al.
Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase
1 in the response to oxidative stress. Mol Cell Biol 2005;
:7625-36.
194. Wong HK, Kim D, Hogue BA, McNeill DR, Wilson 3rd. DM. DNA damage levels and
biochemical repair capacities associated with XRCC1 deficiency. Biochemistry 2005;
25
44
:
14335-43.
195. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar
pathways? Mitochondrion 2005;
:89-108.
196. Unk I, Haracska L, Johnson RE, Prakash S, Prakash L. Apurinic endonuclease activity of yeast
Apn2 protein. J Biol Chem 2000;
5
:22427-34.
197. Senturker S, Auffret van der Kemp P, You HJ, Doetsch PW, Dizdaroglu M, Boiteux S.
Substrate specificities of the ntg1 and ntg2 proteins of Saccharomyces cerevisiae for oxidized
DNA bases are not identical. Nucleic Acids Res 1998;
275
:5270-6.
198. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome dupli-
cation in the yeast Saccharomyces cerevisiae. Nature 2004;
26
:617-24.
199. Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting
their subcellular localization. Trends Biochem Sci 1999;
428
:34-5.
200. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of
N-terminal protein sorting signals. Bioinformatics 2002;
24
:298-305.
201. Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins
and their targeting sequences. Eur J Biochem 1996;
18
:779-86.
202. Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, et al. Systematic study of protein sumoylation:
development of a site-specific predictor of SUMOsp 2.0. Proteomics 2009;
241
:3409-12.
203. Green JR, Dmochowski GM, Golshani A. Prediction of protein sumoylation sites via parallel
cascade identification, In: Canadian medical and biological engineering conference, Vancou-
ver, BC ; 2006.
204. Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, et al. Identification,
analysis, and prediction of protein ubiquitination sites. Proteins 2010;
9
:365-80.
205. Shien DM, Lee TY, Chang WC, Hsu JB, Horng JT, Hsu PC, et al. Incorporating structural
characteristics for identification of protein methylation sites. J Comput Chem 2009;
78
30
:
1532-43.
206. Ingrell CR, Miller ML, Jensen ON, Blom N. NetPhosYeast: prediction of protein phosphoryl-
ation sites in yeast. Bioinformatics 2007;
:895-7.
207. Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification
database. Nucleic Acids Res 2011;
23
:D253-60.
208. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. CSS-Palm 2.0: an updated software for palmitoyla-
tion sites prediction. Protein Eng Des Sel 2008;
39
:639-44.
209. Lippi M, Passerini A, Punta M, Rost B, Frasconi P. MetalDetector: a web server for predicting
metal-binding sites and disulfide bridges in proteins from sequence. Bioinformatics
2008;
21
:2094-5.
210. Ren B, Duan X, Ding H. Redox control of the DNA damage-inducible protein DinG helicase
activity via its iron-sulfur cluster. J Biol Chem 2009;
24
284
:4829-35.
Search WWH ::




Custom Search