Biomedical Engineering Reference
In-Depth Information
64. Erisken, C., Kalyon, D. M., Wang, H., Oernek-Ballanco, C., & Xu, J. (2011). Osteochondral
tissue formation through adipose-derived stromal cell differentiation on biomimetic poly-
caprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concen-
trations. Tissue Engineering Part A , 17 (9-10), 1239-1252.
65. Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design
variables and applications. Biomaterials , 24 (24), 4337-4351.
66. Uludag, H., De Vos, P., & Tresco, P. A. (2000). Technology of mammalian cell encapsulation.
Advanced Drug Delivery Reviews , 42 (1-2), 29-64.
67. Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic
tissue engineering. Biomaterials , 21 (23), 2405-2412.
68. Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches
and tissue-specific considerations. European Spine Journal: Official Publication of the Euro-
pean Spine Society, the European Spinal Deformity Society, and the European Section of the
Cervical Spine Research Society , 17 (Suppl 4), 467-479.
69. Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering
applications. Biomaterials , 23 (22), 4307-4314.
70. Kaur, M., & Srivastava, A. K. (2002). Photopolymerization: A review. Journal of Macromole-
cular Science-Polymer Reviews , C42 (4), 481-512.
71. Jansson, P. E., Lindberg, B., & Sandford, P. A. (1983). Structural studies of gellan gum, an
extracellular polysaccharide elaborated by Pseudomonas-Elodea. Carbohydrate Research ,
124 (1), 135-139.
72. Oliveira, J. T., Martins, L., Picciochi, R., Malafaya, I. B., Sousa, R. A., Neves, N. M., et al.
(2009). Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal
of Biomedical Materials Research Part A , 93A (3), 852-863.
73. Smith, A. M., Shelton, R. M., Perrie, Y., & Harris, J. J. (2007). An initial evaluation of gellan
gum as a material for tissue engineering applications. Journal of Biomaterials Applications ,
22 (3), 241-254.
74. Silva-Correia, J., Oliveira, J. M., Caridade, S. G., Oliveira, J. T., Sousa, R. A., Mano, J. F., et al.
(2011). Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.
Journal of Tissue Engineering and Regenerative Medicine , 5 (6), E97-E107.
75. Oliveira, J. M., Silva, S. S., Malafaya, P. B., Rodrigues, M. T., Kotobuki, N., Hirose, M., et
al. (2009). Macroporous hydroxyapatite scaffolds for bone tissue engineering applications:
Physicochemical characterization and assessment of rat bone marrow stromal cell viability.
Journal of Biomedical Materials Research Part A , 91A (1), 175-186.
76. Oliveira, J. M., Sousa, R. A., Kotobuki, N., Tadokoro, M., Hirose, M., Mano, J. F., et
al. (2009). The osteogenic differentiation of rat bone marrow stromal cells cultured with
dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles.
Biomaterials , 30 (5), 804-813.
77. Landers, R., Pfister, A., Hubner, U., John, H., Schmelzeisen, R., & Mulhaupt, R. (2002).
Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques.
Journal of Materials Science , 37 (15), 3107-3116.
78. Leong, K. F., Cheah, C. M., & Chua, C. K. (2003). Solid freeform fabrication of three-
dimensional scaffolds for engineering replacement tissues and organs. Biomaterials , 24 (13),
2363-2378.
79. Yeong, W. Y., Chua, C. K., Leong, K. F., & Chandrasekaran, M. (2004). Rapid prototyping
in tissue engineering: Challenges and potential. Trends in Biotechnology , 22 (12), 643-652.
80. Landers, R., & Mulhaupt, R. (2000). Desktop manufacturing of complex objects, prototypes
and biomedical scaffolds by means of computer-assisted design combined with computer-
guided 3D plotting of polymers and reactive oligomers. Macromolecular Materials and En-
gineering , 282 (9), 17-21.
81. Landers, R., Hubner, U., Schmelzeisen, R., & Mulhaupt, R. (2002). Rapid prototyping of
scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue en-
gineering. Biomaterials , 23 (23), 4437-4447.
Search WWH ::




Custom Search