Biomedical Engineering Reference
In-Depth Information
to be visualized, to the visualization purpose, to the type of insight to be achieved
and to the type of decision to be taken after.
Finally, when considering semantic interaction , we may think of 3D search as a
type of interaction with the user. Content-based and context-based search of 3Dmod-
els call for new requirements for information representation, filtering, aggregation
and networking, which are as intuitive as possible and effective in their capability of
bringing the users to the 3D content they wish to access.
Acknowledgments This work is supported by the FP7Marie Curie Initial Training Network “Mul-
tiScaleHuman”: Multi-scale Biological Modalities for Physiological Human Articulation (2011-
2015), contract MRTN-CT-2011-289897. We kindly acknowledge the partial support of the FP7
“VISIONAIR”: Vision Advanced Infrastructure for Research (2011-2015), grant no. 262044,
POLITECMED—Research and Innovation Pole of the Regional Centre for Research and Inno-
vation of the Regione Liguria, and the Italian CNR Flagship project INTEROMICS, InterOmics
PB05, research unit WP15. Finally, we kindly thank Osman Ratib for his comments on OsiriX.
References
1. Garber, A. M., Owens, D. K., Singer, S. J., & Enthoven, A. C. (2006). In E. H. Shortliffe & J. J.
Cimino (Eds.), Biomedical informatics: Computer applications in health care and biomedicine .
Newyork: Springer.
2. Andrews, B. (2006). Introduction to “perceptual principles in medical illustration”. ACM SIG-
GRAPH 2006 Courses, SIGGRAPH '06 . NY, USA: ACM. Retrieved July 30, 2006, from
DOI=10.1145/1185657.1185691 http://doi.acm.org/10.1145/1185657.1185691
3. Rosset, A., Spadola, L., & Ratib, O. (2004). OsiriX: An open-source software for navigating
in multidimensional. Journal of Digital Imaging , 17 (205-216).
4. Friese, K. I., Blanke, P., &Wolter, F. E. (2011). YaDiV-An open platform for 3D visualization
and 3D. In The visual computer 27 . Newyork: Springer.
5. 3D Slicer. http://www.slicer.org/
6. White paper on multiscale visualisation (2012). s. l.: http://www.msv-project.eu
7. Google. Google body browser . http://www.zygotebody.com/
8. Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi T., & Okubo, K. (2009). Body-
Parts3D: 3D structure database for anatomical concepts. Nucleic Acids Research , 37 , D782-
D785.
9. BodyParts3D. The Creative Commons Attribution-Share Alike 2.1 Japan. http://lifesciencedb.
jp/bp3d/
10. Rosse, C., & Mejino, J. L. V. (2003). A reference ontology for biomedical informatics: The
foundational model of anatomy. Journal of Biomedical Informatics , 36 , 478-500.
11. FMA on Bioportal. http://bioportal.bioontology.org/ontologies/1053
12. Voxel-Man. http://www.voxel-man.de/3d-navigator/inner_organs/
13. Visible Human Dataset. http://www.nlm.nih.gov/research/visible/getting_data.html
14. Chen, L., Martone, M. E., Gupta, A., Fong, L., & Wong-barnum, M. (2006). OntoQuest:
Exploring ontological data made easy. Very Large Data Bases—VLDB Conference, (pp. 1183-
1186).
15. Spackman, K. (2000). Snomed rt and snomed ct. promise of an international clinical terminol-
ogy. Computer Molecular Dynamics , 17 (6), 29.
16. Cook, D. L., Mejino, J. L. V., & Rosse, C. (2004). Evolution of a foundational model of
hysiology: Symbolic representation for functional bioinformatics. Medinfo , 11 , 336-340.
17. RadLex. http://www.radlex.org/
 
Search WWH ::




Custom Search