Biomedical Engineering Reference
In-Depth Information
References
1. Wilson,W., vanDonkelaar, C. C., vanRietbergen, B., &Huiskes, R. (2005). Afibril-reinforced
poroviscoelastic swelling model for articular cartilage. Journal of Biomechanics , 38 , 1195-
1204.
2. Cowin, S. C., & Doty, S. B. (2007). Tissue Mechanics . New York: Springer.
3. Mow, V. C., & Guo, X. E. (2002). Mechano-electrochemical properties of articular cartilage.
Annual Review of Biomedical Engineering , 4 , 175-209.
4. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New
York: Springer.
5. Laasanen, M. S., et al. (2003). Biomechanical properties of knee articular cartilage. Biorhe-
ology , 40 , 133-140.
6. Fortis, A. P., Kostopoulos, V., Panagiotopoulos, E., Tsantzalis, S., & Kokkinos, A. (2004).
Viscoelastic properties of cartilage-subchondral bone complex in osteoarthritis. Journal of
Medical Engineering and Technology , 28 , 223-226.
7. Li, L. P., Korhonen R. K., Iivarinen, J., Jurvelin, J. S., & Herzog, W. (2008). Fluid pres-
sure driven fibril reinforcement in creep and relaxation tests of articular cartilage. Medical
Engineering and Physics , 22 , 182-189.
8. Huang, C. Y., Mow, V. C., & Ateshian, G. A. (2001). The role of flow-independent vis-
coelasticity in the biphasic tensile and compressive responses of articular cartilage. Journal
of Biomechanical Engineering , 123 , 410-417.
9. Wu, J. Z., Herzog, W., & Epstein, M. (2000). Joint contact mechanics in the early stages of
osteoarthritis. Medical Engineering and Physics , 22 , 1-12.
10. Carter, D. R., &Wong, M. (2003). Modelling cartilage mechanobiology. Philosophical Trans-
actions of the Royal Society of London Series B , 358 , 1461-1471.
11. van Donkelaar, C. C., & Huiskes, R. (2006). The PTHrP-Ihh feedback loop in the embry-
onic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation.
Biomechanics and Modeling in Mechanobiology , 6 (1-2), 55-62.
12. Lacroix, D., &Prendergast, P. J. (2002). Amechano-regulationmodel for tissue differentiation
during fracture healing: Analysis of gap size and loading. Journal of Biomechanics , 35 , 1163-
1171.
13. Jelly, K. D., & Prendergast, P. J. (2006). Prediction of the optimal mechanical properties for
a scaffold used in osteochondral defect repair. Tissue Engineering , 12 , 2509-2529.
14. Boykov, Y., & Funka-Lea, G. (2006). Graph cuts and efficient N-D image segmentation.
International Journal of Computer Vision , 70 (2), 109-131.
15. Zhang, J., Zheng, J., & Cai, J. (2010). A diffusion approach to seeded image segmentation.
In IEEE Computer Vision and Pattern Recognition (CVPR) , San Francisco, USA (pp. 2125-
2132).
16. Cremers, D., Rousson, M., & Deriche, R. (2007). A Review of statistical approaches to
level set segmentation: Integrating color, texture, motion and shape. International Journal of
Computer Vision , 72 (2), 195-215.
17. Nguyen, A., Cai, J., Zhang, J., & Zheng, J. (2012). Robust interactive image segmentation
using convex active contours. IEEE Transactions on Image Processing , 21 (8), 3734-3743.
18. Chiang, P., Cai, Y. Y., Mak, K., & Zheng, J. M. (2013). A B-spline approach to phase unwrap-
ping in tagged cardiac MRI for motion tracking. Magnetic Resonance in Medicine , 69 , 1297-
1309.
19. Sharma, N., & Aggarwal, L. M. (2010). Automated medical image segmentation techniques.
Journal of Medical Physics , 35 (1), 3-14.
20. Gilles, B., & Magnenat-Thalmann, N. (2010). Musculoskeletal MRI segmentation using
multi-resolution simplex meshes with medial representations. Medical Image Analysis , 14 (3),
291-302.
21. Schmid, J., GuitiƔn, J., Gobbetti, E., & Magnenat-Thalmann, N. (2011). A GPU framework
for parallel segmentation of volumetric images using discrete deformable models. The Visual
Computer , 27 (2), 85-95.
Search WWH ::




Custom Search