Biomedical Engineering Reference
In-Depth Information
46. Kepple, T., Arnold, A., Stanhope, S., & Siegel, K. (1994). Assessment of a method to estimate
muscle attachments from surface landmarks: A 3d computer graphics approach. Journal of
Biomechanics , 27 , 365-371.
47. Lawrence, C., & Tits, A. (2001). A computationally efficient feasible sequential quadratic
programming algorithm. SIAM Journal on Optimization , 11 , 1092-1118.
48. Charbonnier, C., Assassi, L., Volino, P., & Magnenat-Thalmann, N. (2009). Motion study of
the hip joint in extreme postures. The Visual Computer , 25 , 873-882.
49. Charbonnier, C., Lyard, E., &Magnenat-Thalmann, N. (2008). Analysis of extreme hip motion
in professional ballet dancers. In: Proceedings of 10th International Symposium of 3D Analysis
of Human Movement . Amsterdam.
50. Park, S., Krebs, D., & Mann, R. (1999). Hip muscle co-contraction: evidence from concurrent
in vivo pressure measurement and force estimation. Gait and Posture , 10 , 311-322.
51. Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. (2007). Model based estimation
of muscle forces exerted during movements. Clinical Biomechanics , 22 , 131-154.
52. Damsgaard, M., Rasmussen, J., Christensen, S., Surma, E., & de Zee, M. (2006). Analysis of
musculoskeletal systems in the anybody modeling system. Simulation Modelling Practice and
Theory , 14 , 1100-1111.
53. Delp, S., Loan, J., Hoy,M., Zajac, F., Topp, E., &Rosen, J. (1990). An interactive graphics-based
model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on
Biomedical Engineering , 37 , 757-767.
54. Piazza, S., & Delp, S. (1996). The influence of muscles on knee flexion during the swing phase
of gait. Journal of Biomechanics , 29 , 723-733.
55. Fox, M., Reinbolt, J., Unpuu, S., & Delp, S. (2009). Mechanisms of improved knee flexion
after rectus femoris transfer surgery. Journal of Biomechanics , 42 , 614-619.
56. Rasmussen, J., & de Zee, M. (2008). Design optimization of airline seats. SAE International
Journal of Passenger Cars—Electronic and Electrical Systems , 1 , 580-584.
57. Sandholm, A., Pronost, N., &Thalmann, D. (2009). Motionlab: Amatlab toolbox for extracting
and processing experimental motion capture data for neuromuscular simulations. In: Proceed-
ings of the Second 3D Physiological Human, Workshop (3DPH) (Vol. 5903).
58. Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., et al. (2007). Opensim: Open-
source software to create and analyze dynamic simulations of movement. IEEE Transactions
on Biomedical Engineering , 54 , 1940-1950.
59. Irving, G., Teran, J., & Fedkiw, R. (2004). Invertible finite elements for robust simulation of
large deformation. In: ACM SIGGRAPH'04 (Vol. 131, pp. 131-140). ACM Press.
60. Volino P., Magnenat-Thalmann, N., &Faure, F. (2009). A Simple Approach to nonlinear tensile
stiffness for accurate cloth simulation. In: ACM Transactions on Graphics (Vol. 28, pp. 105-
116). ACM Press.
61. Volino, P., & Magnenat-Thalmann, N. (2007). Stop-and-go cloth draping. Visual Computer ,
23 , 669-677.
62. Finite Element Software: FEBio, http://mrl.sci.utah.edu/software.php
63. SOFA:Simulation Open-Framework Architecture, http://www.sofa-framework.org
64. Finite Element Software:Code-Aster, http://www.code-aster.org
65. Pfirrmann, C., Mengiardi, B., Dora, C., Kalberer, F., Zanetti, M., & Hodler, J. (2006). Cam and
pincer femoroacetabular impingement: Characteristic mr arthrographic findings in 50 patients.
Journal of Radiology , 240 , 778-785.
66. Dalstra, M., Huiskes, R., & Van-Erning, L. (1995). Development and validation of a three-
dimensional finite element model of the pelvic bone. Journal of Biomechanical Engineering ,
117 , 272-278.
67. Park, S., Hung, C., & Ateshian, G. (2004). Mechanical response of bovine articular cartilage
under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis
Cartilage , 12 , 65-73.
Search WWH ::




Custom Search