Biomedical Engineering Reference
In-Depth Information
tune them until converging to a satisfactory solution according to measurements.
In a virtual scene where the deformation of human body is simulated, graphical vi-
sualization can be incorporated into the system. For example, in the simulation of
the human skin, high-end rendering could be used to make the visualization more
intuitive to observers. The better the visualization, the more realistic the simulation
can become.
Acknowledgments This work has been supported by the Dutch research project COMMIT—
Virtual Worlds for Well-Being [ 74 ].
References
1. 3D anatomical human. EU Research Project. http://3dah.miralab.ch/ , 2010.
2. Multi scale biological modalities for physiological human articulation. EU Research Project.
http://multiscalehuman.miralab.ch/ , 2013.
3. Zordan, V. B., Celly, B., Chiu, B., & DiLorenzo, P. C. (2006). Breathe easy: Model and control
of human respiration for computer animation. Graphical Models , 68 (2), 113-132.
4. DiLorenzo, P. C., Zordan, V. B., & Sanders, B. L. (2008). Laughing out loud: Control for
modeling anatomically inspired laughter using audio. ACM Transactions on Graphics , 27 (5),
125:1-125:8.
5. Lee, S.-H., Sifakis, E., & Terzopoulos, D. (2009). Comprehensive biomechanical modeling
and simulation of the upper body. ACM Transactions on Graphics , 28 (4), 99:1-99:17.
6. Winter, D. A. (2005). Biomechanics and motor control of human movement (3rd ed.). Hoboken:
Wiley.
7. Nordin, M., & Frankel, V. H. (2012). Basic biomechanics of the musculoskeletal system (4th
ed.). USA: Wolters Kluwer Health.
8. Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties . Cambridge
Solid State Science Series. Cambridge: Cambridge University Press.
9. Spivak, J. M., DiCesare, P., Feldman, D., Koval, K., Rokito, A., & Zuckerman, J. D. (1999).
Orthopaedics: A study guide . New York: McGraw-Hill.
10. Seth, A., Sherman, M., Eastman, P., & Delp, S. (2010). Minimal formulation of joint motion
for biomechanisms. Nonlinear Dynamics , 62 (1-2), 291-303.
11. Scheepers, F., Parent, R. E., Carlson, W. E., & May, S. F. (1997). Anatomy-based modeling of
the human musculature. In Proceedings of the 24th annual conference on Computer Graphics
and Interactive Techniques , 1997, pp. 163-172.
12. Yamaguchi, G. T., & Zajac, F. E. (1989). A planar model of the knee joint to characterize the
knee extensor mechanism. Journal of Biomechanics , 22 (1), 1-10.
13. Wilhelms, J. (1997). Animals with anatomy. IEEE Computer Graphics and Applications , 17 (3),
22-30.
14. Maurel, W., & Thalmann, D. (2000). Human shoulder modeling including scapulo-thoracic
constraint and joint sinus cones. Computers and Graphics , 24 (2), 203-218.
15. Gasser, H. S., & Hill, A. V. (1924). The dynamics of muscular contraction. Proceedings of
the Royal Society of London. Series B, containing papers of a biological character , 96 (678),
398-437.
16. Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings
of the Royal Society of London. Series B, Biological Sciences , 126 (843), 136-195.
17. Zajac, F. E. (1988). Muscle and tendon: Properties, models, scaling, and application to biome-
chanics and motor control. Critical Reviews in Biomedical Engineering , 17 (4), 359-411.
18. Lee, D., Glueck, M., Khan, A., Fiume, E., & Jackson, K. (2010). A survey of modeling and
simulation of skeletal muscle. ACM Transactions on Graphics , 28 (4).
Search WWH ::




Custom Search