Biomedical Engineering Reference
In-Depth Information
46. Yeo, S.Y., Xie, X., Sazonov, I., & Nithiarasu, P. (2009). Geometric potential force for the
deformable model. In Proceedings of the British Machine Vision Conference (pp. 99.1-99.11).
BMVA Press.
47. Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic active contours. In Proceedings of
IEEE International Conference on Computer Vision (vol. 22, pp. 61-79). IEEE Computer
Society Press.
48. Unger, M., Pock, T., & Bischof, H. (2008). Continuous globally optimal image segmentation
with local constraints. In J. Pers (Ed.), Proceedings of the Computer Vision Winter Workshop
2008 .
49. Adalsteinsson, D., & Sethian, J. A. (1995). A fast level set method for propagating interfaces.
Journal of Computational Physics , 118 (2), 269-277.
50. Whitaker, R. T. (1998). A level-set approach to 3D reconstruction from range data. Interna-
tional Journal of Computer Vision , 29 (3), 203-231.
51. Shi, Y., &Karl, W. C. (2005). A fast level set method without solving PDEs. In Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05) ,
2005 (vol. 2, pp. 97-100).
52. Meziou, L., Histace, A., Precioso, F., Matuszewski, B., & Carreiras, F. (2012). Fractional
entropy based active contour segmentation of cell nuclei in actin-tagged confocal microscopy
images. In Proceedings of the 16th MIUA Conference , p. accepted. Swansea, Royaume-Uni,
Jul 2012.
53. Kainmueller, D., Lamecker, H., Zachowa, S., Heller, M., & Hege, H. C. (2008). Multi-object
segmentation with coupled deformable models. In Proceedings of the 12th Annual Conference
on Medical Image Understanding and Analysis 2008 .
54. Bredno, J., Lehmann, T. M. T., & Spitzer, K. (2003). A general discrete contour model
in two, three, and four dimensions for topology-adaptive multichannel segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence , 25 (5), 550-563.
55. Gilles, B., & Magnenat-Thalmann, N. (2010). Musculoskeletal MRI segmentation using
multi-resolution simplex meshes with medial representations. Medical Image Analysis , 14 (3),
291-302.
56. Cohen, I., Cohen, L. D., & Ayache, N. (1992). Using deformable surfaces to segment 3-D
images and infer differential structures. Comp Vision Graphics and Image Understanding ,
56 (2), 242-263.
57. Cohen, L., &Cohen, I. (1993). Finite-element methods for active contour models and balloons
for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence ,
15 (11), 1131-1147.
58. Terzopoulos, D., & Metaxas, D. (1991). Dynamic 3D models with local and global defor-
mations: deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine
Intelligence , 13 (7), 703-714.
59. Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. Computer , 21 (4), 163-169.
60. Miller, J. V., Breen, D. E., Lorensen, W. E., O'Bara, R. M., &Wozny, M. J. (1991). Geometri-
cally deformed models: A method for extracting closed geometric models form volume data.
SIGGRAPH Computer Graphics , 25 (4), 217-226.
61. Delingette, H. (1994). Simplex meshes: A general representation for 3D shape reconstruction.
In Computer Vision and Pattern Recognition 1994 (vol. 2214, pp. 856-857). IEEE Computer
Society Press.
62. Delingette, H. (1999). General object reconstruction based on simplex meshes. International
Journal of Computer Vision , 32 (2), 111-146.
63. Montagnat, J., & Delingette, H. (2005). 4D deformable models with temporal constraints:
Application to 4D cardiac image segmentation. Medical Image Analysis , 9 (1), 87-100.
64. Gilles, B., Moccozet, L., & Magnenat-Thalmann, N. (2006). Anatomical modelling of the
musculoskeletal system from MRI. In Proceeings of International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI06) , Oct 2006 (vol. 4190,
pp. 289-296).
Search WWH ::




Custom Search