Digital Signal Processing Reference
In-Depth Information
and
Q 2 (
ω
2 )
=
S (
ω
2 )
+
[ ˆ
α
2 (
ω
2 ) a (
ω
2 )
Z (
ω
2 )]
1
1
1
1
1
2 )] H
×
[ ˆ
α
2 (
ω
2 ) a (
ω
2 )
Z (
ω
,
(6.45)
1
1
1
where S (
ω
2 ) and Z (
ω
2 )are defined as
1
1
L 1
1
L 2
1
L 1
1
L 2
1
1
L 1 L 2
1
L 1 L 2
z l 1 , l 2 z l 1 , l 2
S (
ω
2 )
Γ l 1 , l 2
+
1
l 1
=
0
l 2
=
0
l 1
=
0
l 2
=
0
2 ) Z H (
Z (
ω
ω
2 )
.
(6.46)
1
1
and
L 1
1
L 2
1
1
L 1 L 2
z l 1 , l 2 e j ( ω 1 l 1 + ω 2 l 2 )
Z (
ω
2 )
.
(6.47)
1
l 1
=
0
l 2
=
0
The derivation of the MAPES-EM2 algorithm is thus complete, and a step-by-step
summary of this algorithm is as follows:
Step 0: Obtain an initial estimate of
{ α
(
ω
2 )
,
Q (
ω
2 )
}
.
1
1
Step 1: Use the most recent estimates of
in (6.39) and
(6.40) to calculate b and K .Note that b canberegarded as the current
estimate of the missing sample vector.
Step 2: Update the estimates of
{ α
(
ω
2 )
,
Q (
ω
2 )
}
1
1
{ α
(
ω
2 )
,
Q (
ω
2 )
}
using (6.44) and (6.45).
1
1
Step 3: Repeat steps 1 and 2 until practical convergence.
6.4 TWO-DIMENSIONAL MAPES VIA CM
Next we consider evaluating the spectrum on the K 1
×
K 2 -point DFT grid. Instead
of dealing with each individual frequency (
ω
k 2 ) separately, we consider the
k 1
following maximization problem:
K 1
1
K 2
1
L 1
1
L 2
1
1
L 1 L 2
max
ln
|
Q (
ω
k 2 )
|−
k 1
µ , { α
ω k 1 k 2 )
,
ω k 1 k 2 )
}
(
Q (
k 1 =
0
k 2 =
0
l 1 =
0
l 2 =
0
y l 1 , l 2 α
k 2 ) e j ( ω k 1 l 1 + ω k 2 l 2 ) H
(
ω
k 2 ) a (
ω
k 1
k 1
k 2 ) e j ( ω k 1 l 1 + ω k 2 l 2 )
k 2 ) y l 1 , l 2 α
Q 1 (
×
ω
(
ω
k 2 ) a (
ω
,
k 1
k 1
k 1
(6.48)
Search WWH ::




Custom Search