Biology Reference
In-Depth Information
Tran, K. D., & Doe, C. Q. (2008). Pdm and Castor close successive temporal identity win-
dows in the NB3-1 lineage. Development , 135 , 3491-3499.
Tran, K. D., Miller, M. R., & Doe, C. Q. (2010). Recombineering Hunchback identifies
two conserved domains required to maintain neuroblast competence and specify
early-born neuronal identity. Development , 137 , 1421-1430.
Truman, J. W., & Bate, M. (1988). Spatial and temporal patterns of neurogenesis in the cen-
tral nervous system of Drosophila melanogaster. Developmental Biology , 125 , 145-157.
Truman, J. W., Moats, W., Altman, J., Marin, E. C., & Williams, D. W. (2010). Role of
Notch signaling in establishing the hemilineages of secondary neurons in Drosophila
melanogaster. Development , 137 , 53-61.
Tsuji, T., Hasegawa, E., & Isshiki, T. (2008). Neuroblast entry into quiescence is regulated
intrinsically by the combined action of spatial Hox proteins and temporal identity factors.
Development , 135 , 3859-3869.
Udolph, G., Rath, P., & Chia, W. (2001). A requirement for Notch in the genesis of a subset
of glial cells in the Drosophila embryonic central nervous system which arise through
asymmetric divisions. Development , 128 , 1457-1466.
Viktorin, G., Riebli, N., Popkova, A., Giangrande, A., & Reichert, H. (2011). Multipotent
neural stem cells generate glial cells of the central complex through transit amplifying
intermediate progenitors
in Drosophila brain development. Developmental Biology ,
356 , 553-565.
Weng, M., Golden, K. L., & Lee, C. Y. (2010). dFezf/Earmuff maintains the restricted devel-
opmental potential of intermediate neural progenitors in Drosophila. Developmental Cell ,
18 , 126-135.
White, K., & Kankel, D. R. (1978). Patterns of cell division and cell movement in the for-
mation of the imaginal nervous system in Drosophila melanogaster. Developmental
Biology , 65 , 296-321.
Wu, Y. C., Chen, C. H., Mercer, A., & Sokol, N. S. (2012). Let-7-complex microRNAs
regulate the temporal identity of Drosophila mushroom body neurons via chinmo.
Developmental Cell , 23 , 202-209.
Yang, X., Yeo, S., Dick, T., & Chia, W. (1993). The role of a Drosophila POU homeo
domain gene in the specification of neural precursor cell identity in the developing
embryonic central nervous system. Genes & Development , 7 , 504-516.
Yasugi, T., Umetsu, D., Murakami, S., Sato, M., & Tabata, T. (2008). Drosophila optic lobe
neuroblasts triggered by a wave of proneural gene expression that is negatively regulated
by JAK/STAT. Development , 135 , 1471-1480.
Yu, H. H., Chen, C. H., Shi, L., Huang, Y., & Lee, T. (2009). Twin-spot MARCM to
reveal the developmental origin and identity of neurons. Nature Neuroscience , 12 ,
947-953.
Yu, H. H., Kao, C. F., He, Y., Ding, P., Kao, J. C., & Lee, T. (2010). A complete devel-
opmental sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM.
PLoS Biology , 8 , e1000461.
Yu, F., Kuo, C. T., & Jan, Y. N. (2006). Drosophila neuroblast asymmetric cell division:
Recent advances and implications for stem cell biology. Neuron , 51 , 13-20.
Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y., & Jan, Y. N. (2011). Ets transcription factor
Pointed promotes the generation of intermediate neural progenitors in Drosophila larval
brains. Proceedings of the National Academy of Sciences of the United States of America , 108 ,
20615-20620.
Zhu, S., Lin, S., Kao, C. F., Awasaki, T., Chiang, A. S., & Lee, T. (2006). Gradients of the
Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell ,
127 , 409-422.
 
Search WWH ::




Custom Search