Environmental Engineering Reference
In-Depth Information
29. Bard, A.J. and L.R. Faulkner (2001). Electrochemical Methods: Fundamentals and
Applications. 2nd ed. John Wiley, New York, xxi, 833.
30. Larminie, J., A. Dicks, and Knovel (2003). (Firm), Fuel Cell Systems Explained. 2nd ed.
John Wiley, Chichester, West Sussex, xxii, 406.
31. Kato Marcus, A., C.I. Torres, and B.E. Rittmann (2007). Conduction based modeling of
the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98, 1171-1182.
32. Rittmann, B.E. and P.L. McCarty (2001). Environmental biotechnology: principles and
applications. McGraw-Hill Book Co., Boston, 754 pp.
33. VanBriesen, J.M. and B.E. Rittmann (2000). Mathematical description of microbiologi-
cal reactions involving intermediates (vol 67, pg 35, 1999). Biotechnol Bioeng 68,
705-705.
34. VanBriesen, J.M. (2002). Evaluation of methods to predict bacterial yield using thermo-
dynamics. Biodegradation 13, 171-190.
35. Cheng, S., H. Liu, and B.E. Logan (2006). Increased power generation in a continuous
flow MFC with advective flow through the porous anode and reduced electrode spacing.
Environ Sci Technol 40, 2426-2432.
36. Liu, H., S.A. Cheng, and B.E. Logan (2005). Production of electricity from acetate or
butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39, 658-662.
37. Fan, Y., H. Hu, and H. Liu (2007). Enhanced coulombic efficiency and power density of
air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171,
348-354.
38. Ringeisen, B.R., E. Henderson, P.K. Wu, J. Pietron, R. Ray, B. Little, J.C. Biffinger, and
J.M. Jones-Meehan (2006). High power density from a miniature microbial fuel cell using
Shewanella oneidensis DSP10. Environ Sci Technol 40, 2629-2634.
39. Esteve-Nunez, A., M. Rothermich, M. Sharma, and D. Lovley (2005). Growth of Geo-
bacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ
Microbiol 7, 641-648.
40. Bond, D.R. and D.R. Lovley (2003). Electricity production by Geobacter sulfurreducens
attached to electrodes. Appl Environ Microbiol 69, 1548-1555.
41. Whitman, W.B., D.C. Coleman, and W.J. Wiebe (1998). Prokaryotes: the unseen major-
ity. P Natl Acad Sci USA 95, 6578-6583.
42. Liu, H. and B.E. Logan (2004). Electricity generation using an air-cathode single chamber
microbial fuel cell in the presence and absence of a proton exchange membrane. Environ
Sci Technol 38, 4040-4046.
43. Rabaey, K. andW. Verstraete (2005). Microbial fuel cells: novel biotechnology for energy
generation. Trends Biotechnol 23, 291-298.
44. Rabaey, K., N. Boon, M. Hofte, and W. Verstraete (2005). Microbial phenazine produc-
tion enhances electron transfer in biofuel cells. Environ Sci Technol 39, 3401-3408.
45. Reguera, G., K.P. Nevin, J.S. Nicoll, S.F. Covalla, T.L. Woodard, and D.R. Lovley
(2006). Biofilm and nanowire production leads to increased current in Geobacter sulfur-
reducens fuel cells. Appl Environ Microbiol 72, 7345-7348.
46. Pham, T.H., N. Boon, P. Aelterman, P. Clauwaert, L. De Schamphelaire, L. Vanhaecke,
K. De Maeyer, M. Hofte, W. Verstraete, and K. Rabaey (2008). Metabolites produced by
Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron
transfer. Appl Microbiol Biotechnol 77, 1119-1129.
47. Picioreanu, C., I.M. Head, K.P. Katuri, M.C.M. van Loosdrecht, and K. Scott (2007). A
computational model for biofilm-based microbial fuel cells. Water Res 41, 2921-2940.
48. Freguia, S., K. Rabaey, Z.G. Yuan, and J. Keller (2007). Electron and carbon balances in
microbial fuel cells reveal temporary bacterial storage behavior during electricity genera-
tion. Environ Sci Technol 41, 2915-2921.
49. Rozendal, R.A., H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, and C.J.N. Buisman
(2006). Principle and perspectives of hydrogen production through biocatalyzed electro-
lysis. Int J Hydrogen Energ 31, 1632-1640.
Search WWH ::




Custom Search