Environmental Engineering Reference
In-Depth Information
40. Samanta, S.K., O.V. Singh, and R.K. Jain, Polycyclic aromatic hydrocarbons: environ-
mental pollution and bioremediation. Trends in Biotechnol., 2002. 20(6): pp. 243-248.
41. Hilpert, M., Lattice-Boltzmann model for bacterial chemotaxis. J. Math. Biol., 2005. 51(3):
pp. 302-332.
42. Law, A.M. and M.D. Aitken, Bacterial chemotaxis to naphthalene desorbing from a
nonaqueous liquid. Appl. Environ. Microbiol., 2003. 69(10): pp. 5968-5973.
43. Law, A.M. and M.D. Aitken, Continuous-flow capillary assay for measuring bacterial
chemotaxis. Appl. Environ. Microbiol., 2005. 71(6): pp. 3137-3143.
44. Marx, R.B. and M.D. Aitken, Quantification of chemotaxis to naphthalene by Pseudomo-
nas putida G7. Appl. Environ. Microbiol., 1999. 65(7): pp. 2847-2852.
45. Marx, R.B. and M.D. Aitken, A material-balance approach for modeling bacterial chemo-
taxis to a consumable substrate in the capillary assay. Biotechnol. Bioeng., 2000. 68(3): pp.
308-315.
46. Marx, R.B. andM.D. Aitken, Bacterial chemotaxis enhances naphthalene degradation in a
heterogeneous aqueous system. Environ. Sci. Technol., 2000. 34(16): pp. 3379-3383.
47. Long, W. and M. Hilpert, Analytical solutions for bacterial energy taxis (chemotaxis):
Traveling bacterial bands. Adv. Water Resour., 2007. 30(11): pp. 2262-2270.
48. Barton, J.W. and R.M. Ford, Determination of effective transport coefficients for bacterial
migration in sand columns. Appl. Environ. Microbiol., 1995. 61(9): pp. 3329-3335.
49. Olson, M.S., et al., Mathematical modeling of chemotactic bacterial transport through a
two-dimensional heterogeneous porous medium. Bioremediation J., 2006. 10(1): pp. 13-23.
50. Bashan, Y. and G. Holguin, Root-to-root travel of the beneficial bacterium azospirillum
brasilense. Appl. Environ. Microbiol., 1994. 60(6): pp. 2120-2131.
51. Soby, S. and K. Bergman, Motility and chemotaxis of rhizobium meliloti in soil. Appl.
Environ. Microbiol., 1983. 46(5): pp. 995-998.
52. Witt, M.E., et al., Motility-enhanced bioremediation of carbon tetrachloride-contaminated
aquifer sediments. Environ. Sci. Technol., 1999. 33(17): pp. 2958-2964.
53. Lanning, L.M., R.M. Ford, and T. Long, Bacterial chemotaxis transverse to axial flow in a
microfluidic channel. Biotechnol. Bioeng., 2008. 100(4): pp. 653-663.
54. U.S. EPA, Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents
in Ground Water. EPA/600/R-98/128, 1998.
55. U.S. EPA, Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents:
Fundamentals and Field Applications. EPA 542-R-00-008, 2000.
56. Kim, H.-S. and P.R. Jaffe, Spatial distribution and physiological state of bacteria in a
sand column experiment during the biodegradation of toluene. Water Res., 2007. 41(10):
pp. 2089-2100.
57. Harwood, C.S., M. Rivelli, and L.N. Ornston, Aromatic acids are chemoattractants for
Pseudomonas putida. J. Bacteriol., 1984. 160(2): pp. 622-628.
58. Lopez-de-Victoria, G. and C.R. Lovell, Chemotaxis of azospirillum species to aromatic
compounds. Appl. Environ. Microbiol., 1993. 59(9): pp. 2951-2955.
59. Dharmatilake, A.J. andW.D. Bauer, Chemotaxis of rhizobiummeliloti towards nodulation
gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol., 1992. 58(4): pp.
1153-1158.
60. Parke, D., M. Rivelli, and L.N. Ornston, Chemotaxis to aromatic and hydroaromatic
acids: comparison of bradyrhizobium japonicum and rhizobium trifolii. J. Bacteriol., 1985.
163(2): pp. 417-422.
61. Hawkins, A.C. and C.S. Harwood, Chemotaxis of ralstonia eutropha JMP134(pJP4) to
the herbicide 2,4-dichlorophenoxyacetate. Appl. Environ. Microbiol., 2002. 68(2): pp.
968-972.
62. Roush, C.J., C.M. Lastoskie, and R.M. Worden, Denitrification and chemotaxis of
pseudomonas stutzeri KC in porous media. J. Environ. Sci. Health, Part A, 2006. 41(6):
pp. 967-983.
Search WWH ::




Custom Search