Biology Reference
In-Depth Information
21.3 DISCUSSION
This chapter describes basic tools for controlling pf number in vitro and distinguishing
13-pf microtubules from others using DCX-GFP. It is our hope, of course, that
fluorescence-based assays for microtubule architecture and microtubule structure will
continue to evolve. In the future, we may be able to nucleate microtubules of any given
type using controlled conditions or specialized reagents. Likewise, we may be able to
define or control the longitudinal curvature of the lattice. The development of these
tools will enable the next generation of single-molecule assays to ask deeper questions
about how microtubule architecture influences the behavior of MAPs.
EM will retain pride of place in the study of microtubule architecture. Advances
in helical reconstruction algorithms ( Li et al., 2002 ) have enabled the generation of
exceptional density maps for 11-pf through 16-pf microtubules ( Sui & Downing,
2010 ). These density maps have described tubulin-tubulin bonds in atomic detail.
By coupling this knowledge with dynamic assays, we can explore the “structural
plasticity” of tubulin polymers.
Acknowledgments
We would like to thank Sami Chaaban for critical reading of the chapter. This work is sup-
ported by grants from the Natural Sciences and Engineering Research Council of Canada
(#372593-09) and the Canadian Institutes of Health Research (MOP-111265). G. J. B. is sup-
ported by a Canadian Institutes of Health Research New Investigator Award.
References
Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A., & Rice, L. M. (2012). A TOG:alphabeta-
tubulin complex structure reveals conformation-based mechanisms for a microtubule po-
lymerase. Science , 337 , 857-860.
Bechstedt, S., & Brouhard, G. J. (2012). Doublecortin recognizes the 13-protofilament micro-
tubule cooperatively and tracks microtubule ends. Developmental Cell , 23 , 181-192.
Bieling, P., Laan, L., Schek, H., Munteanu, E. L., Sandblad, L., Dogterom, M., et al. (2007).
Reconstitution of a microtubule plus-end tracking system in vitro. Nature , 450 ,
1100-1105.
Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K., Harrison, S. C., et al.
(2008). XMAP215 is a processive microtubule polymerase. Cell , 132 , 79-88.
Chretien, D., Metoz, F., Verde, F., Karsenti, E., & Wade, R. H. (1992). Lattice defects in mi-
crotubules: Protofilament numbers vary within individual microtubules. The Journal of
Cell Biology , 117 , 1031-1040.
Chretien, D., & Wade, R. H. (1991). New data on the microtubule surface lattice. Biology of
the Cell , 71 , 161-174.
Davis, L. J., Odde, D. J., Block, S. M., & Gross, S. P. (2002). The importance of lattice defects
in katanin-mediated microtubule severing in vitro. Biophysical Journal , 82 , 2916-2927.
Search WWH ::




Custom Search