Biology Reference
In-Depth Information
Cassimeris, L., Gard, D., Tran, P. T., & Erickson, H. P. (2001). XMAP215 is a long thin mol-
ecule that does not
increase microtubule stiffness. Journal of Cell Science , 114 ,
3025-3033.
Crocker, J. C., & Grier, D. G. (1996). Methods of digital video microscopy for colloidal stud-
ies. Journal of Colloid and Interface Science , 179 , 298-310.
Duke, T., Holy, T. E., & Leibler, S. (1995). “Gliding assays” for motor proteins: A theoretical
analysis. Physical Review Letters , 74 , 330-333.
Felgner, H., Frank, R., Biernat, J., Mandelkow, E. M., Mandelkow, E., Ludin, B., et al. (1997).
Domains of neuronal microtubule-associated proteins and flexural rigidity of microtu-
bules. The Journal of Cell Biology , 138 , 1067-1075.
Friedman, L. J., Chung, J., & Gelles, J. (2006). Viewing dynamic assembly of molecular com-
plexes by multi-wavelength single-molecule fluorescence. Biophysical Journal , 91 ,
1023-1031.
Gittes, F., Mickey, B., Nettleton, J., &Howard, J. (1993). Flexural rigidity of microtubules and
actin filaments measured from thermal fluctuations in shape. The Journal of Cell Biology ,
120 , 923-934.
Hawkins, T., Mirigian, M., Selcuk Yasar, M., &Ross, J. L. (2010). Mechanics of microtubules.
Journal of Biomechanics , 43 , 23-30.
Heussinger, C., Bathe, M., & Frey, E. (2007). Statistical mechanics of semiflexible bundles of
wormlike polymer chains. Physical Review Letters , 99 , 048101.
Janson, M. E., & Dogterom, M. (2004). A bending mode analysis for growing microtubules:
Evidence for a velocity-dependent rigidity. Biophysical Journal , 87 , 2723-2736.
Kikumoto, M., Kurachi, M., Tosa, V., & Tashiro, H. (2006). Flexural rigidity of individual
microtubules measured by a buckling force with optical traps. Biophysical Journal , 90 ,
1687-1696.
Lee, I. (2000). Curve reconstruction from unorganized points. Computer Aided Geometric
Design , 17 , 161-177.
Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., et al. (2007).
Molecular cell biology (6th ed.). New York: W. H. Freeman and Company.
Marchuk, K., Guo, Y., Sun, W., Vela, J., & Fang, N. (2012). High-precision tracking with non-
blinking quantum dots resolves nanoscale vertical displacement. Journal of the American
Chemical Society , 134 , 6108-6111.
Mehrbod, M., &Mofrad, M. R. (2011). On the significance of microtubule flexural behavior in
cytoskeletal mechanics. PloS One , 6 , e25627.
Nitzsche, B., Ruhnow, F., & Diez, S. (2008). Quantum-dot-assisted characterization of micro-
tubule rotations during cargo transport. Nature Nanotechnology , 3 , 552-556.
Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E., & Florin, E. L. (2006). Thermal
fluctuations of grafted microtubules provide evidence of a length-dependent persistence
length. Proceedings of the National Academy of Science of United States of America ,
103 , 10248-10253.
Phillips, R., Kondev, J., & Theriot, J. (2008). Physical biology of the cell. New York: Garland
Science.
Portran, D., Zoccoler, M., Gaillard, J., Stoppin-Mellet, V., Neumann, E., Arnal, I., et al.
(2013). MAP65/Ase1 promote microtubule flexibility. Molecular Biology of the Cell,
24 , 1964-1973 .
Taute, K. M., Pampaloni, F., Frey, E., & Florin, E. L. (2008). Microtubule dynamics depart
from the wormlike chain model. Physical Review Letters , 100 , 028102.
 
Search WWH ::




Custom Search