Biology Reference
In-Depth Information
Deffner, G. J., & Hafter, R. E. (1960b). Chemical investigations of the giant nerve fiber of the
squid. Biochimica et Biophysica Acta , 42 , 200-205.
Hearn, M. T., Hodder, A. N., & Aguilar, M. I. (1988). High-performance liquid chromatog-
raphy of amino acids, peptides and proteins. LXXXVI. The influence of different displacer
salts on the retention and bandwidth properties of proteins separated by isocratic anion-
exchange chromatography. Journal of Chromatography , 443 , 97-118.
Jordan, M. A., & Kamath, K. (2007). How do microtubule-targeted drugs work? An overview.
Current Cancer Drug Targets , 7 (8), 730-742.
Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature
Reviews. Cancer , 4 (4), 253-265. http://dx.doi.org/10.1038/nrc1317 .
Leopold, P. L., Lin, J.-W., Sugimori, M., Llinas, R., &Brady, S. T. (1994). The nervous system
of Loligo pealei provides multiple models for analysis of organelle motility. In
N. J. Abbott, R. Williamson, & L. Maddock (Eds.), Cephalopod neurobiology: Neurosci-
ence studies in squid, octopus and cuttlefish (pp. 15-34). Oxford: Oxford University Press.
Morris, J., & Lasek, R. J. (1982). Stable polymers of the axonal cytoskeleton: The axoplasmic
ghost. The Journal of Cell Biology , 92 , 192-198.
Morris, J., & Lasek, R. J. (1984). Monomer-polymer equilibria in the axon: Direct measure-
ment of tubulin and actin as polymer and monomer in axoplasm. The Journal of Cell Bi-
ology , 98 , 2064-2076.
Olmsted, J. B., & Borisy, G. G. (1975). Ionic and nucleotide requirements for microtubule
polymerization in vitro. Biochemistry , 14 (13), 2996-3005.
Sakai, H., & Matsumoto, G. (1978). Tubulin and other proteins from squid giant axon. [Com-
parative Study]. Journal of Biochemistry , 83 (5), 1413-1422.
Song, Y. (2010). Stabilization of neuronal microtubules by polyamines and transglutaminase:
Its roles in brain function (Ph.D). Chicago: University of Illinois.
Song, Y., Kirkpatrick, L. L., Schilling, A. B., Helseth, D. L., Chabot, N., Keillor, J. W., et al.
(2013). Transglutaminase and polyamination of tubulin: Posttranslational modification for
stabilizing axonal microtubules. Neuron , 78 , 109-123.
Tischfield, M. A., Baris, H. N., Wu, C., Rudolph, G., Van Maldergem, L., He, W., et al. (2010).
Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon
guidance. Cell , 140 (1), 74-87. http://dx.doi.org/S0092-8674(09)01558-X [pii] 1016/j.
cell.2009.12.011.
Weisenberg, R. C. (1973). Microtubule formation in vitro from solutions containing low cal-
cium concentrations. Science , 177 , 1104-1105.
Weiss, D. G., Langford, G. M., Seitz-Tutter, D., & Keller, F. (1988). Dynamic instability and
motile events of native microtubules from squid axoplasm. Cell Motility and the Cytoskel-
eton , 10 , 285-295.
Weiss, D. G., Langford, G. M., Seitz-Tutter, D., & Maile, W. (1991). Analysis of the gliding,
fishtailing and circling motions of native microtubules. Acta Histochemica. Supplement-
band , 41 , 81-105.
Westh, P., Kato, H., Nishikawa, K., & Koga, Y. (2006). Toward understanding the Hofmeister
series. 3. Effects of sodium halides on the molecular organization of H2O as probed by 1-
propanol. Journal of Physical Chemistry A , 110 (5), 2072-2078. http://dx.doi.org/10.1021/
jp055036y .
Windebank, A. J., & Grisold, W. (2008). Chemotherapy-induced neuropathy. Journal of the
Peripheral
Nervous
System ,
13 (1),
27-46.
http://dx.doi.org/10.1111/j.1529-
8027.2008.00156.x .
Search WWH ::




Custom Search