Biomedical Engineering Reference
In-Depth Information
[36] J. Wagner, T. Kirner, G. Mayer, J. Albert, J.M. Kohler, Generation of metal nanoparticles in a micro-
channel reactor, Chem. Eng. J. 101 (2004) 251-260.
[37] C. Sonnichsen, A.P. Alivisatos, Gold nanorods as novel nonbleaching plasmon-based orientation sensors
for polarized single-particle microscopy, Nano Lett. 5 (2005) 301-304.
[38] A.V. Pattekar, M.V. Kothare, A microreactor for hydrogen production in micro fuel cell applications,
J. Microelectromech. Syst. 13 (2004) 7-18.
[39] J.D. Holladay, E.O. Jones, M. Phleps, J. Hu, High efficiency and low carbon monoxide micro-scale
methanol processors, J. Power Sourc. 131 (2004) 69-72.
[40] O.J. Kwon, S.M. Hwang, J.H. Chae, M.S. Kang, J.J. Kim, Performance of a miniaturized silicon reformer-
PrOx-fuel cell system, J. Power Sourc. 165 (2007) 342-346.
[41] A.E. Kamholz, et al., Quantitative analysis of molecular interactive in microfluidic channel: the T-sensor,
Anal. Chem. 71 (1999) 5340-5347.
[42] T.T. Veenstra, Characterization method for a new diffusion mixer applicable in micro flow injection
analysis systems, J. Micromech. Microeng. 9 (1999) 199-202.
[43] M. Kakuta, et al., Micromixer-based time-resolved NMR: Applications to ubiquitin protein conformation,
Anal. Chem. 75 (2003) 956-960.
[44] K. Fluri, et al., Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar
quartz and glass chips, Anal. Chem. 68 (1996) 4285-4290.
[45] Y. Lin, et al., Ultrafast microfluidic mixer and freeze-quenching device, Anal. Chem. 75 (2003) 5381-5386.
[46] B.J. Burke, F.E. Regnier, Stopped-flow enzyme assays on a chip using a microfabricated mixer, Anal.
Chem. 75 (2003) 1786-1791.
[47] A.G. Hadd, et al., Microchip device for performing enzyme assays, Anal. Chem. 69 (1997)
3407-3412.
[48] G.M. Walker, M.S. Ozers, D.J. Beebe, Cell infection within a microfluidic device using virus gradients,
Sensor. Actuator. B Chem. 98 (2004) 347-355.
[49] Vijiayendran, et al., Evaluation of a three-dimensional micromixer in a surface-based biosensor, Langmuir
19 (2003) 1824-1828.
[50] D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Leed, T.H. Kwon, Disposable integrated microfluidic biochip for blood
typing by plastic microinjection moulding, Lab Chip 6 (2006) 794-802.
[51] N.Y. Lee, M. Yamada, M. Seki, Development of a passive micromixer based on repeated fluid twisting and
flattening, and its application to DNA purification, Anal. Bioanal. Chem. 5 (2005) 776-782.
[52] H.Y. Lee, J. Voldman, Optimizing micromixer design for enhancing dielectrophoretic microconcentrator
performance, Anal. Chem. 79 (2007) 1833-1839.
[53] S.D. Kim, H.J. Kim, N.L. Jeon, Biological applications of microfluidic gradient devices, Integr. Biol.
2 (2010) 584-603.
[54] B.G. Chung, J.B. Choo, Microfluidic gradient platforms for controlling cellular behavior, Electrophoresis
31 (2010) 3014-3027.
[55] S.J. Wang, W. Saadi, F. Lin, C.M.C. Nguyen, N.L. Jeon, Differential effects of EGF gradient profiles on
MDA-MB-231 breast cancer cell chemotaxis, Exp. Cell Res. 300 (2004) 180-189.
[56] V.V. Abhyankar, M.W. Toepke, C.L. Cortesio, M.A. Lokuta, A. Hutenlocher, D.J. Beebe, A platform for
assessing chemotactic migration within a spatiotemporally defined 3D microenvironment, Lab Chip 8
(2008) 1507-1515.
[57] N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, Neutrophil chemotaxis in linear and complex
gradients of interleukin-8 formed in a microfabricated device, Nat. Biotechnol. 20 (2002) 826-830.
[58] F. Lin, C.M.C. Nguyen, S.J. Wang, W. Saadi, S.P. Gross, N.L. Jeon, Effective neutrophil chemotaxis is
strongly influenced by mean IL-8 concentration, Biochem. Biophys. Res. Commun. 319 (2004)
576-581.
Search WWH ::




Custom Search