Biomedical Engineering Reference
In-Depth Information
where
Z a
Z a
1
a
d y 1
a
c 0 ð
c
ð
x
;
t
Þ¼
c
ð
x
;
y
;
t
Þ
x
;
y
;
t
Þ¼
0
0
0
Z a
Z a
u 1
a
d y 1
a
u 0 ¼
u
ð
y
Þ
:
0
0
0
Substituting (2.62) into (2.60) results in:
vc
vx þ
D v 2 c
v 2 c 0
vx 2 þ
v 2 c
vy 2
vc 0
vt þð
vc 0
vx
vc
vt þ
u 0 Þ
u
þ
¼
vx 2 þ
(2.63)
with
0 ¼
vc 0
vy
Symmetry condition :
0
y¼h ¼
vc 0
vy
Wall condition :
0
c t j 0 ¼
Initial condition : c
þ
c 0 ð
x
;
y
Þ:
Averaging (2.63) from 0 to h leads to:
u 0
vx d y
Z h
u vc 0
vc 0
D v 2 c
vc
vt þ
1
h
vx þ
¼
vx 2 :
(2.64)
0
The initial condition of the above equation is:
Z h
1
h
c
j 0 ¼
f
ð
x
;
y
Þ
d y
:
(2.65)
0
Similar to Taylor's original approach, the dispersion coefficient can be derived from the above
equation if the fluctuation concentration c 0
is known. Subtracting (2.64) from (2.63) leads to the partial
differential equation for c 0 :
2
4 u 0
vx d y 3
u 0
D v 2 c 0
Z h
vc 0
vt þ
u vc 0
vc 0
vx
vc 0
vx
vc 0
v 2 c 0
vy 2
1
h
5 ¼
u 0
vx þ
vx 2 þ
(2.66)
0
with
Z h
1
h
c 0 j 0 ¼
c 0 ð
x
;
y
Þ
c 0 ð
x
;
y
Þ
d y
:
(2.67)
0
Assuming that
vc 0
vt ;
vc 0
vx ;
v 2 c
vx 2 [
v 2 c 0
vx 2 ;
vc
vt [
vc
vx [
(2.68)
Search WWH ::




Custom Search