Biomedical Engineering Reference
In-Depth Information
Substituting X ( x ), Y ( y ) and T ( t ) back into (7.84) results in:
A sin mpx
L
C sin npy
z mn ¼
W ð
E sin ut
þ
f cos ut
Þ
(7.97)
sin mpx
L
sin npy
¼
W ðM sin ut þ N cos utÞ
with m
.
The modal frequency f mn ¼
¼
1, 2,
.
u /(2
p
) can be determined from:
ðu=cÞ
q
mp
L
2
k 2
¼
(7.98)
or
mp
L
2 c 2
mp
L
2 c 2
np
W
2 c 2
u 2
k 2 c 2
¼
þ
¼
þ
:
(7.99)
Thus,
s
T
s
m 2
L 2 þ
n 2
W 2
1
2 p
f mn ¼
(7.100)
with m
. Fig. 7.34 shows the solution for the first few vibration modes of a rectangular
membrane. These vibration modes will affect the acoustically induced flow pattern inside the mixing
chamber. For a square membrane ( L
¼
1, 2,
.
¼
W ), the two modes mn and nm have the same frequency
( f mn ¼
f nm ). At this frequency, the membrane can vibrate with an infinite number of different shapes.
The different shapes results from the combination of a and b in the equation:
z
ð
x
;
y
;
t
Þ¼ð
az mn þ
bz mn Þ
cos u mn t
(7.101)
FIGURE 7.34
Some vibration modes of a rectangular membrane (L:W¼ 1:2).
Search WWH ::




Custom Search