Biomedical Engineering Reference
In-Depth Information
[21] C. Simonnet, A. Croisman, Chaotic mixing in a steady flow in a microchannel, Phys. Rev. Lett. 94 (2005)
134501.
[22] D. Kim, S.H. Lee, T.H. Kwon, C.H. Ahn, A serpentine laminating micromixer combining splitting/
recombination and advection, Lab on a Chip 5 (2005) 739-747.
[23] H.M. Xia, C. Shu, S.Y.M. Wan, Y.T. Chew, Chaotic micromixers using two-layer crossing channels to
exhibit fast mixing at low Reynolds numbers, Lab on a Chip 5 (2005) 748-755.
[24] S.H. Chang, Y.H. Cho, Static micromixers using alternating whirls and lamination, J. Micromech.
Microeng. 15 (2005) 1397-1405.
[25] A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, Chaotic mixer for
microchannels, Science 295 (2002) 647-650.
[26] A.D. Stroock, G.M. Whitesides, Controlling flows in microchannels with patterned surface charge and
topography, Accounts Chem. Res. 36 (2003) 597-604.
[27] J. Aubin, D.F. Fletcher, J. Bertrand, C. Xuereb, Characterization of the mixing quality in micromixers,
Chem. Eng. Technol. 26 (2003) 1262-1270.
[28] T.J. Johnson, D. Ross, L.E. Locascio, Rapid microfluidic mixing, Anal. Chem. 74 (2002) 45-51.
[29] F. Sch¨nfeld, S. Hard, Simulation of helical flows in microchannels, AIChE J. 50 (2004) 771-778.
[30] D.G. Hassel, W.B. Zimmerman, Investigation of the convective motion through a staggered herringbone
micromixer at low Reynolds number flow, Chem. Eng. Sci. 61 (2006) 2977-2985.
[31] T.G. Kang, T.H. Kwon, Colored particle tracking method for mixing analysis of chaotic micromixers,
J. Micromech. Microeng. 14 (2004) 891-899.
[32] N.S. Lynn, D.S. Dandy, Geometrical optimization of helical flow in grooved micromixers, Lab on a Chip 7
(2007) 580-587.
[33] P.B. Howell, D.R. Mott, S. Fertig, C.R. Kaplan, J.P. Golden, E.S. Oran, F.S. Ligler, A microfluidic mixer
with grooves placed on the top and bottom of the channel, Lab on a Chip 5 (2004) 524-530.
[34] T.M. Floyd-Smith, J.P. Golden, P.B. Howell, F.S. Ligler, Characterization of passive microfluidic mixers
fabricated using soft lithography, Microfluidics and Nanofluidics 2 (2006) 180-183.
[35] X. Fu, S.F. Liu, X.D. Ruan, H.Y. Yang, Research on staggered oriented ridges static micromixers, Sens.
Actuators B Chem. 114 (2006) 618-624.
[36] D.S. Kim, S.W. Lee, T.H. Kwon, S.S. Lee, A barrier embedded chaotic micromixer, J. Micromech.
Microeng. 14 (2004) 798-805.
[37] A. Bertsch, S. Heimgartner, P. Cousseau, P. Renaud, Static micromixers based on large-scale industrial
mixer geometry, Lab on a Chip 1 (2001) 56-60.
[38] D.S. Kim, I.H. Lee, T.H. Kwon, D.W. Cho, A barrier embedded kenics micromixer, J. Micromech.
Microeng. 14 (2004) 1294-1301.
[39] A. G¨nther, K.F. Jensen, Multiphase microfluidics: from flow characteristics to chemical and materials
synthesis, Lab on a Chip 6 (2006) 1487-1503.
[40] G.I. Taylor, The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond. A 146 (1934) 501.
[41] P. Garstecki, H.A. Stone, G.M. Whitesides, Mechanism for flow-rate controlled breakup in confined
geometries: A route to monodisperse emulsions, Phys. Rev. Lett. 94 (2005) 164501.
[42] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles
in a microfluidic T-junction-scaling and mechanism of break-up, Lab on a Chip 6 (2006). 437-446.
[43] M.G. Lippmann, Relations entre les´nom`n´lectriques et capillares, Ann. Chim. Phys. 5 (1875)
494-549.
[44] Z. Jiao, N.T. Nguyen, X.Y. Huang, Y.Z. Ang, Reciprocating thermocapillary plug motion in an externally
heated capillary, Microfluidics and Nanofluidics 3 (2006) 39-46.
[45] M. Bringer, C.J. Gerdts, H. Song, J.D. Tice, R.F. Ismagilov, Microfluidic systems for chemical kinetics that
rely on chaotic mixing in droplets, Phil. Trans. R. Soc. Lond. A 362 (2004) 1087-1104.
Search WWH ::




Custom Search