Biomedical Engineering Reference
In-Depth Information
the control electrode at the bottom. The 1 1 mm control electrode changes the hydrophobicity of the
solid/liquid interface. An 800-nm Parylene C layer works as the insulator. The ground electrode is
made of transparent ITO for optical investigation. A 60-nm Teflon layer was coated over the surface to
make it hydrophobic. Electrowetting allows different droplet handling operations, such as droplet
dispensing ( Fig. 6.41 (b)), droplet merging ( Fig. 6.41 (c)), droplet cutting ( Fig. 6.41 (d)), and droplet
transport ( Fig. 6.41 (e)). These basic operations allow merging and fast mixing of liquid droplets.
References
[1] S. Wiggins, J.M. Ottino, Foundation of chaotic mixing, Phil. Trans. R. Soc. Lond. A 362 (2004) 937-970.
[2] D. Bothe, C. Stemich, H.J. Warnecke, Fluid mixing in a T-shaped micro-mixer, Chem. Eng. Sci. 61 (2006)
2950-2958.
[3] M. Hoffmann, C. Schl¨ter, N. R¨biger, Experimental investigation of liquid-liquid mixing in T-shaped
micro-mixers using m -LIF and m -PIV, Chem. Eng. Sci. 61 (2006) 2968-2976.
[4] N.T. Nguyen, D. Bochnia, R. Kiehnscherf, W. D¨ tzel, Investigation of forced convection in micro-fluid
systems, Sens. Actuators A Phys. 55 (1996) 49-55.
[5] S.H. Wong, M.C.L. Ward, C.W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sens. Actuators B
Phys. (2004) 359-379.
[6] N. Kockmann, T. Kiefer, M. Engler, P. Woias, Silicon microstructures for high throughput mixing devices,
Microfluidics and Nanofluidics 4 (2006) 327-335.
[7] H. Wang, P. Iovenitti, E. Harvey, S. Masood, Optimizing layout of obstacles for enhanced mixing in
microchannels, Smart Mater. Struct. 11 (2002) 414-424.
[8] Y. Lin, G.J. Gerfen, D.L. Rousseau, S.R. Yeh, Ultrafast microfluidic mixer and freeze-quenching device,
Anal. Chem. 75 (2003) 5381-5386.
[9] F. Jiang, K.S. Drese, S. Hardt, M. K¨pper, F. Sch¨nfeld, Helical flows and chaotic mixing in curved micro
channels, AIChE J. 50 (2004) 2297-2305.
[10] V. Mengeaud, J. Josserand, H.H. Girault, Mixing processes in a zigzag microchannel: finite element
simulation and optical study, Anal. Chem. 74 (2002) 4279-4286.
[11] M.Q. Yi, H.H. Bau, The kinematics of bend-induced mixing in micro-conduits, Int. J. Heat and Fluid Flow
24 (2003) 645-656.
[12] R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, Passive
mixing in a three-dimensional serpentine microchannel, J. Microelectromech. Syst. 9 (2000) 190-197.
[13] R.A. Vijiayendran, K.M. Motsegood, D.J. Beebe, D.E. Leckband, Evaluation of a three-dimensional
micromixer in a surface-based biosensor, Langmuir 19 (2003) 1824-1828.
[14] H. Chen, J.C. Meiners, Topologic mixing on a microfluidic chip, Appl. Phys. Lett. 84 (2004) 2193-2195.
[15] C.C. Hong, J.W. Choi, C.H. Ahn, A novel in-plane microfluidic mixer with modified tesla structures, Lab
on a Chip 4 (2004) 109-113.
[16] Y. Mizuno, M. Funakoshi, Chaotic mixing due to a spatially periodic three-dimensional flow, Fluid
Dynam. Res. 31 (2002) 129-149.
[17] M.K. Jeon, J.H. Kim, J. Noh, S.H. Kim, H.G. Park, S.I. Woo, Design and characterization of a passive
recycle micromixer, J. Micromech. Microeng. 15 (2005) 346-350.
[18] S.J. Park, J.K. Kim, J. Park, S. Chung, C. Chung, J.K. Chang, Rapid three-dimensional passive rotation
micromixer using the breakup process, J. Micromech. Microeng. 14 (2004) 6-14.
[19] A.P. Sudarsan, V.M. Ugaz, Multivortex micromixing, PNAS 103 (2006) 7228-7233.
[20] A.P. Sudarsan, V.M. Ugaz, Fluid mixing in planar spiral microchannels, Lab on a Chip 6 (2006) 74-82.
Search WWH ::




Custom Search