Biomedical Engineering Reference
In-Depth Information
[39] G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J.M. Moran, J. Melzak, Eval-
uation of MEMS materials of construction for implantable medical device, Biomaterials 23 (2002)
2737 e 2750.
[40] G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer, Bio-
compatability and biofouling of MEMS drug delivery device, Biomaterials 24 (2003) 1959 e 1967.
[41] P.R. Hernandez, C. Taboada, L. Leijia, V. Tsutsumi, B. Vazquez, F. Valdes-Perezgasga, J.L. Reyes,
Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation, Sens.
Actuators B Chem. 46 (1998) 133 e 138.
[42] A.C.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y. Li, M.J. Cima and R.A. Langer, BioMEMS
review: MEMS technology for physiologically integrated devices, in: Proceedings of the IEEE, vol. 92,
2004, pp. 6 e 21.
[43] B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Sigel, Hard and soft micromachining for BioMEMS: review of
techniques and examples of application in microfluidics and drug delivery, Adv. Drug Deliv. Rev. 56
(2004) 145 e 172.
[44] G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Soft lithography in biology and
biochemistry, Annu. Rev. Biomed. Eng. 3 (2001) 335 e 373.
[45] A. Lendlein, S. Kelch, Shape memory polymers, Angew. Chem. Int. Ed. 41 (2002) 2034 e 2057.
[46] A. Facchetti, M.H. Yoon, T.J. Marks, Gate dielectrics for organic field-effect transistor: new opportunities
for organic electronics, Adv. Mater. 17 (2005) 1705
1725.
[47] E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, Fabrication of microstructures with
high aspect ratios and great structural heights by synchrotron radiation lithography, glavanoforming, and
plastic moulding (LIGA Process), Microelectron. Eng. 4, pp. 35 e 56.
[48] H. Guckel, T.R. Christensen and K.J. Skrobis, Formation of Microstructures Using a Preformed Photo-
resist Sheet, U.S. Patent #5378583, January 1995.
[49] B. Chaudhuri, H. Guckel, J. Klein, K. Fisher, Photoresist application for the LIGA process, Microsystem
Technologies 4 (1998) 159 e 162.
[50] J. Mohr, W. Ehrfeld, D. Munchmeyer, Requirements on resist layers in deep-etch synchrotron radiation
lithography, J. Vac. Sci. Tech. B6 (1988) 2264 e 2267.
[51] H. Guckel, J. Uglow, M. Lin, D. Denton, J. Tobin, K. Euch, M. Juda, Plasma polymerization of methyl
methacrylate: A photoresist for 3D applications, Technical Digest of the IEEE Solid State Sensor and
Actuator Workshop, Hilton Head Island, SC, 4 e 7 June, 1988, pp. 43 e 46.
[52] V. Ghica and W. Glashauser, Verfahren f¨r die Spannungsfreie Entwicklung von Bestrahlten Poly-
methylmethacrylate-Schichten, German patent, #3039110, 1982.
[53] J.M. Shaw, J.D. Gelorme, N.C. la Bianca, P. Renaud, P. Vettiger, Negative photoresists for optical
lithography, IBM Journal of Research and Development 41 (1997) 81 e 94.
[54] H. Lorenz, M. Despont, N. Fahrni, N. la Bianca, P. Renaund, P. Vettinger, SU-8: A low-cost negative
resist for MEMS, J. Micromech. Microeng. 7 (1997) 121 e 124.
[55] H. Lorenz, P. Vettinger, P. Renaud, Fabrication of photoplastic high-aspect ratio microparts and micro-
molds using SU-8 UV resist, Microsystem Technologies 4 (1998) 143 e 146.
[56] MicroChem Corp, NANO SU-8 Negative Tone Photoresists Formulations 2 e 25, Data sheets, 2001.
[57] MicroChem Corp, NANO SU-8 Negative Tone Photoresists Formulations 50 e 100, Data sheets, 2001.
[58] H.K. Chang, Y.K. Kim, UV-LIGA process for high aspect ratio structure using stress barrier and
C-shaped etch hole, Sens. Actuators A Phys. 84 (2000) 342
e
350.
[59] M.K. Ghantasala, J.P. Hayes, E.C. Harvey, D.K. Sood, Patterning, electroplating and removal of SU-8
moulds by excimer laser micromachining, J. Micromech. Microeng. 11 (2001) 133 e 139.
[60] H.E. Ayliffe, A.B. Frazier, R.D. Rabbitt, Electric impedance spectroscopy using microchannels with
integrated metal electrodes, IEEE J. Microelectromech. Syst. Vol.8 (1) (1999) 50 e 57.
e
Search WWH ::




Custom Search