Biomedical Engineering Reference
In-Depth Information
References
[1] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, Second ed., John Wiley & Sons Inc,
New York, 2007.
[2] D.T. Paris, F.K. Hurd, Basic Electromagnetic Theory, McGraw-Hill Inc, New York, 1969.
[3] J.R. Edward, J.C. Michael, Electromagnetics, CRC Press LLC, Boca Raton, Florida, 2001.
[4] R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, 1985.
[5] P. Bhattacharjee, D.N. Riahi, Numerical Study of Surface Tension Driven Convection in Thermal
Magnetic Fluids.
IDEALS TAM Reports 1081, University of
Illinois, 2005, http://hdl.handle.net/
2142/339 .
[6] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12-49.
[7] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modelling surface tension, J. Comput.
Phys. 100 (1992) 335-354.
[8] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solution to incompressible two-
phase flow, J. Comput. Phys. 114 (1994) 146-159.
[9] D. Peng, B. Merriman, S. Osher, H. Zhao, M. Kang, A PDE-based fast local level-set method, J. Comput.
Phys. 155 (1999) 410-438.
[10] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface
capturing, J. Comput. Phys. 183 (2002) 83-116.
[11] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput.
Phys. 39 (1981) 201-225.
[12] J. Glimm, J.W. Grove, X.L. Li, K.M. Shyue, Y. Zeng, Q. Zhang, Three-dimensional front-tracking, SIAM
J. Sci. Comput. 19 (1998) 702-723.
[13] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J.
Comput. Phys. 100 (1992) 25-37.
[14] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publisher, New York, 1980.
[15] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: the Finite Volume
Method, Second ed., Prentice Education Limited, England, 2007.
[16] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's
method, J. Comput. Phys. 32 (1979) 101-136.
[17] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Num.
Anal. 21-5 (1984) 995-1011.
[18] P.L. Roe, M.J. Baines, Algorithms for advection and shock problems, in: Proc. of the 4th GAMM Conf. on
Num. Meth. in Fluid Mech., Paris, France, Oct. 7-9, 1981.
[19] P.L. Roe, Some contributions to the modelling of discontinuous flows, in: Proc. of the 15th Summer
Seminar on App. Math., La Jolla, CA, Jun. 27-Jul. 8, 1983.
[20] G.S. Jiang, D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21
(2000) 2126-2143.
[21] C.W. Shu, S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes, J.
Comput. Phys. 77 (1988) 439-471.
[22] P.J. Roache, Code verification by the method of manufactured solution, J. Fluids Eng. 124 (2002) 4-10.
[23] C.K. Hwar, R.S. Hirsh, T.D. Taylor, A pseudospectral method for solution of the three-dimensional
incompressible Navier-Stokes equations, J. Comput. Phys. 70 (1987) 439-462.
[24] T.W.H. Sheu, C.H. Yu, P.H. Chiu, Development of a dispersively accurate conservative level set scheme
for capturing interface in two-phase flows, J. Comput. Phys. 228 (2009) 661-686.
Search WWH ::




Custom Search