Biomedical Engineering Reference
In-Depth Information
3. R.
Richards-Kortum,
E.
Sevick-Muraca,
Quantitative
optical
spectroscopy
for
tissue
diagnosis. Annu. Rev. Phys. Chem. 47 , 555-606 (1996)
4. A. Mahadevan-Jansen, R. Richards-Kortum, Raman spectroscopy for the detection of cancers
and precancers. J. Biomed. Opt. 1 , 31-70 (1996)
5. H. Zeng, H. Lui, D.I. McLean, C. MacAulay, B. Palcic, Optical spectroscopy studies of
diseased skin-preliminary results. Proc. SPIE 2628 , 281-285 (1995)
6. H. Zeng, H. Lui, D.I. McLean, C. MacAulay, B. Palcic, Update on fluorescence spectroscopy
studies of diseased skin. Proc. SPIE 2671 , 196-198 (1996)
7. H. Zeng, C. MacAulay, D.I. McLean, B. Palcic, Miniature spectrometer and multispectral
imager as a potential diagnostic aid in dermatology. Proc. SPIE 2387 , 57-61 (1995)
8. H. Zeng, C. MacAulay, D.I. McLean, B. Palcic, Reconstruction of in vivo skin autofluo-
rescence spectrum from microscopic properties by Monte Carlo simulation. J. Photochem.
Photobiol. B 38 , 234-240 (1997)
9. H. Zeng, D.I. McLean, C. MacAulay, H. Lui, Autofluorescence properties of skin and
applications in dermatology. Proc. SPIE 4224 , 366-373 (2000)
10. H. Zeng, D.I. McLean, C. MacAulay, B. Palcic, H. Lui, Autofluorescence of basal cell
carcinoma. Proc. SPIE 3245 , 5-7 (1998)
11. Z. Huang, H. Zeng, I. Hamzavi, D.I. McLean, H. Lui, Rapid near-infrared Raman spec-
troscopy system for real-time in vivo skin measurements. Opt. Lett. 26 , 1782-1784 (2001)
12. J. Zhao, H. Lui, D.I. McLean, H. Zeng, Integrated real-time Raman system for clinical in vivo
skin analysis. Skin Res. Technol. 14 , 484-492 (2008)
13. T. Vo-Dinh, Basic instrumentation in photonics, in Biomedical Photonics Handbook , ed. by
T. Vo-Dinh (CRC Press, New York, 2003)
14. N. MacKinnon, U. Stange, P. Lane, C. MacAulay, M. Quatrevalet, Spectrally programmable
light engine for in vitro and in vivo molecular imaging and spectroscopy. Appl. Opt. 44 ,
2033-2040 (2005)
15. J.C. Knight, Photonic crystal fibres. Nature 424 , 847-851 (2003)
16. K.P. Hansen, R.E. Kristiansen, Supercontinuum generation in photonic crystal fibers. http://
www.thorlabs.com/ThorCat/10700/10736-A02.pdf.AccessedJune2010
17. M. Seefeldt, A. Heuer, R. Menzel, Compact white-light source with an average output power
of 2.4 W and 900 nm spectral bandwidth. Opt. Commun. 216 , 199-202 (2003)
18. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstruc-
ture optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25 , 25-27 (2000)
19. H.R. Morris, C.C. Hoyt, P.J. Treado, Imaging spectrometers for fluorescence and Raman
microscopy: acousto-optic and liquid crystal tunable filters. Appl. Spectrosc. 48 , 857-866
(1994)
20. C.D. Tran, R.J. Furlan, Spectrofluorometer based on acousto-optic tunable filters for rapid
scanning and multicomponent sample analyses. Anal. Chem. 65 , 1675-1681 (1993)
21. E.N. Lewis, P.J. Treado, I.W. Levin, A miniaturized non-moving-parts Raman spectrometer.
Appl. Spectrosc. 47 , 539-543 (193)
22. N. Uchida, Optical properties of single-crystal paratellurite (TeO2). Phys. Rev. B 4 , 3736
(1971)
23. ST-133 controller operations manual, Princeton Scientific Instruments, Monmouth Junction,
N.J. 2004
24. HoloSpec Imaging Spectrograph Operations Manual, Kaiser Optical Systems Inc., Ann
Arbor, MI, USA, 2002
25. N.M. Marin, N. MacKinnon, C. MacAulay, S.K. Chang, E.N. Atkinson, D. Cox,
D. Serachitopol, B. Pikkula, M. Follen, R. Richards-Kortum, Calibration standard for
multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis. J. Biomed. Opt.
11 , 014010 (2006)
26. J. Zhao, H. Lui, D.I. McLean, H. Zeng, Towards instrument independent quantitative
measurement of fluorescence intensity in fiber optic spectrometer system. Appl. Opt. 46 ,
7132-7140 (2007)
Search WWH ::




Custom Search